17 Nov 2018

Quantum Numbers and Nodes: A General Chemistry Flipped Classroom Module

In-Class Activity

Submitted by Jack F Eichler, University of California, Riverside
Categories
Prerequisites: 
Corequisites: 
Course Level: 
Description: 

This is a flipped classroom module that covers the concepts of quantum numbers, and radial and angular nodes. This activity is designed to be done at the beginning of the typical first quarter/first semester general chemistry course (for an atoms first approach; if instructors use a traditional course structure this unit is likely done towards the middle/end of the first quarter/semester). Students will be expected to have learned the following concepts prior to completing this activity:

a) quantization of energy in the atom and the Bohr model of the atom;

b) how the wave/particle duality of electrons was described by de Broglie;

c) how the wave/particle duality of electrons was used by Schrodinger to develop the quantum mechanical model of the atom;

d) how radial probability distribution was used to generate the idea of atomic orbitals, and orbital probability surfaces.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

 

 

Learning Goals: 

a) describe the meaning of the quantum numbers n, l, and ml;

b) determine the values of the quantum numbers n, l, and ml;

c) describe the meaning of radial and angular nodes;

d) determine the number of radial and angular nodes on different types of atomic orbitals;

e) begin to understand the correlation between the quantum numbers and the total number of atomic orbitals for a given atom, and how the periodic table can be used to build up the overall orbital structure for an atom.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes
Evaluation
Evaluation Methods: 
1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

 

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Creative Commons License: 
Creative Commons Licence

The VIPEr community supports respectful and voluntary sharing. Click here for a description of our default Creative Commons license.