Geometry Indices

Anthony L. Fernandez Merrimack College

Created by Anthony L. Fernandez, Merrimack College, fernandeza@merrimack.edu and posted on VIPEr (www.ionicviper.org) on 12 January 2018, Copyright Anthony L. Fernandez, 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license visit http://creativecommons.org/about/license/.

Geometries of Transition Metal Complexes

- Transition metals centers exhibit a wide variety of coordination numbers and their complexes adopt a wide range of geometries.
- The most common coordination numbers of transition metal centers are 4, 5, and 6.
 - Transition metal centers with 6 ligands most commonly adopt an octahedral geometry.
 - Four- and five-coordinate metal centers exhibit limiting geometries, but also adopt distortions of these structures quite readily.
- Geometry indices have been developed so that four- and five-coordinate geometries can be quantitatively described.

Four-coordinate Geometries

• For four-coordinate metal complexes, tetrahedral and square planar geometries are commonly observed.

 As metals transition between these two geometries, there are several structures that can be considered distortions of these geometries - see-saw (or compressed tetrahedron, left) and triangular pyramid (right).

Bond Angles in Different Geometries

	Tetrahedral	Trigonal pyramid	Seesaw	Square planar
L ₁ -M-L ₂	109.5°	90°	90°	90°
L_2 -M- L_3	109.5°	120°	120°	90°
L ₃ -M-L ₄	109.5°	120°	90°	90°
L ₁ -M-L ₄	109.5°	90°	180°	90°
L ₁ -M-L ₃	109.5°	90°	90°	180°
L ₂ -M-L ₄	109.5°	120°	90°	180°

Geometry Index (τ_4)

Houser and co-workers developed a geometry index that can be used to quantitatively describe the geometry adopted by four-coordinate complexes.

In a four-coordinate complex, there are 6 angles formed by the four M-L bonds. The two largest angles, α and β , are used to determine the τ_4 value.

$$\tau_4 = \frac{360 - (\alpha + \beta)}{141}$$

 τ_4 (tetrahedron) = 1 τ_4 (square planar) = 0

Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 955–964.

Geometry Index (τ_4 ')

Okuniewski and co-workers developed a geometry index that can be used to quantitatively describe the geometry adopted by four-coordinate complexes. This geometry index was created to allow for the easier differentiation between four-coordinate structures.

In a four-coordinate complex, there are 6 angles formed by the four M-L bonds. The two largest angles, α and β (where $\beta > \alpha$), are used to determine the τ_4' value.

Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Polyhedron 2015, 90 (C), 47–57.

Bond Angles in Different Geometries

	β (largest angle)	α (2 nd largest angle)	$ au_{4}$	τ4'
Tetrahedral	109.5°	109.5°	1.00	1.00
Trigonal pyramidal	120°	120°	0.85	0.85
Seesaw	180°	90°	0.64	0.36
Seesaw	180°	109.5°	0.50	0.28
Seesaw	180°	154.4°	0.18	0.10
Seesaw	180°	170°	0.07	0.04
Square planar	180°	180°	0.00	0.00

Calculation of τ_4 and τ_4' - Examples

- The structures shown below can be found in the Teaching Subset of Mercury, which is freely available from the CCDC.
- The angles were measured in Mercury and the two largest angles are listed below each structure.

Ni1	Ni2	
β = 180.0°	β = 119.6°	
α = 180.0°	α = 118.7°	
$\tau_4 = 0$	$\tau_4 = 0.86$	
$\tau_{4}' = 0$	$\tau_{4}' = 0.86$	

 $\beta = 150.6^{\circ} \ \alpha = 150.6^{\circ}$ $\tau_4 = 0.42$ $\tau_4' = 0.42$ $\beta = 156.6^{\circ} \ \alpha = 102.6^{\circ}$ $\tau_4 = 0.71$ $\tau_4' = 0.55$

Bond Angles in Different Geometries (CN = 5)

	Square pyramidal	Trigonal bipyramidal
L ₁ -M-L ₂	90°	90°
L ₁ -M-L ₃	90°	90°
L ₁ -M-L ₄	90°	90°
L ₁ -M-L ₅	90°	180°
L ₂ -M-L ₃	90°	120°
L ₂ -M-L ₄	180°	120°
L ₂ -M-L ₅	90°	90°
L ₃ -M-L ₄	90°	120°
L ₃ -M-L ₅	180°	90°
L ₄ -M-L ₅	90°	90°

Geometry Index (τ_5)

Addison, Reedijk, and co-workers developed a geometry index that can be used to quantitatively describe the geometry adopted by fivecoordinate complexes.

In a five-coordinate complex, there are 10 angles formed by the five M-L bonds. The two largest angles, α and β (where $\beta > \alpha$), are used to determine the τ_5 value.

$$\tau_5 = \frac{\beta - \alpha}{60} \qquad \qquad \tau_5 \text{ (trigonal bipyramidal)} = 1 \\ \tau_5 \text{ (square pyramidal)} = 0$$

Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.

Calculation of τ_{5} - **Examples**

- The structures shown below can be found in the Teaching Subset of Mercury, which is freely available from the CCDC.
- The angles were measured in Mercury and the two largest angles are listed below each structure.

 $eta = 176.4^{\circ} \quad \alpha = 122.0^{\circ}$ $au_5 = 0.91$

$$\beta = 175.0^{\circ} \ \alpha = 145.0^{\circ}$$

 $\tau_5 = 0.50$

CTPOCO

 $\beta = 176.8^{\circ} \ \alpha = 176.8^{\circ} \ \tau_5 = 0$