Created by Stefanie Barnett, Katelyn Yowell, and Murielle Watzky (murielle.watzky@unco.edu), University of Northern Colorado, and posted on VIPEr (<u>www.ionicviper.org</u>) in January 2017. Copyright Stefanie Barnett, Katelyn Yowell, and Murielle Watzky (2017). This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License. To view a copy of this license visit <u>http://creativecommons.org/about/license/</u>.

Synthesis, Electrochemistry, and Reactivity of Half-Sandwich Ruthenium Complexes Bearing Metallocene-Based Bisphosphines

Shaw, A.P.; Norton, J.R.; Bucella, D.; Sites, L.A.; Kleinbach, S.S.; Jarem, D.A.; Bocage, K.M.; Nataro, C. *Organometallics* **2009**, 28, 3804-3814. **DOI**: 10.1021/om900062a

- 1. What motivations did the authors have for using half-sandwich ruthenium complexes bearing metallocene-based bisphosphines?
- 2. Given these motivations, what did the authors do in this study?
- 3. Consider the complex 1e.
 - a. Draw the **1e** complex, making sure to include the full structure of the metallocene-based bisphosphine ligand.
 - b. Give the full name of the metallocene-based bisphosphine ligand.
- 4. Consider the reaction of $6j[PF_6]_2$ to $2j[PF_6]$.

Use the CBC method to count electrons in both complexes. Be sure to list the classification (i.e. $ML_1X_xZ_z^{+/-Q}$), valence number, ligand bond number, electron number, and d^n count.

	6j[PF ₆] ₂	2j [PF ₆]
Classification		
Equivalent Neutral Class		
Valence Number		
Ligand Bond Number		
Electron Number		
d ⁿ Count		

- 5. Complexes **1a-1e** were prepared by reacting CpRu(PPh₃)₂Cl with metallocene-based bisphosphine ligands. Propose a reasonable explanation as to why the dtbpf ligand did not work for this synthesis, while other ligands did..
- 6. Consider the redox potentials measured for the chloride complexes 1a-1h.
 - a. How did the authors assign the potentials to each metal?
 - b. What was the effect of changing from a Cp to a Cp* ligand on the Ru(III/II) potential? Explain.

Created by Stefanie Barnett, Katelyn Yowell, and Murielle Watzky (murielle.watzky@unco.edu), University of Northern Colorado, and posted on VIPEr (<u>www.ionicviper.org</u>) in January 2017. Copyright Stefanie Barnett, Katelyn Yowell, and Murielle Watzky (2017). This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License. To view a copy of this license visit <u>http://creativecommons.org/about/license/</u>.

- c. What was the effect of changing the metal and/or phosphine substituents in the metallocene-based bisphosphine ligand on the Ru(III/II) potential?
- 7. Consider the redox potentials reported for the hydride complexes 2a-2j.
 - a. Which complexes showed irreversible oxidations?
 - b. Why do 18e⁻ metal hydrides often undergo oxidation, but not the reversible reduction reaction?
 - c. How does the Ru(III/II) potential in a hydride complex compare to its chloride analog? Explain.
- 8. What was the purpose of using iminium cations in this experiment?
- Upon protonation, most hydride complexes give a dihydrogen complex that isomerizes to a *trans*-dihydride. In this study, however, 2j[PF₆] forms a dihydrogen complex, 3i[PF₆][BF₄], that is stable for several hours at room temperature.
 - a. Explain why **3j**[PF₆][BF₄] eventually isomerizes into **4j**[PF₆][BF₄].
 - b. Explain how the difference in acidity between **3j**[PF₆][BF₄] and **4j**[PF₆][BF₄] can be used to predict the equilibrium position between the two isomers.
 - c. What type of reaction is taking place in equation 4? Which dihydride conformation (cis or trans) would you normally expect to form from the dihydrogen sigma complex?
 - d. Explain how the authors distinguished between the dihydrogen and dihydride complexes using ¹H NMR.