Created by Amanda Bowman, Colorado College (abowman@coloradocollege.edu), and posted on VIPEr (www.ionicviper.org) on July 16, 2019. Copyright Amanda Bowman, 2019. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license visit http://creativecommons.org/about/license/

Porphyrin-Based Metal-Organic Frameworks

For this activity, we will discuss the literature article "Iron and Porphyrin Metal-Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity," which explores the synthesis, physical structures, and chemical structures of several metal-organic frameworks based around porphyrin ligands. Read through the journal article (Fateeva et al. *Cryst. Growth Des.* **2015**, *15*, 1819-1826), then answer the questions with your group. The relevant crystallographic information files (cifs) can be found in the Supporting Information of the journal article, or on the Cambridge Crystallographic Data Centre (CCDC) Access Structures site (https://www.ccdc.cam.ac.uk/structures/) using the refcodes or DOI from the article.

1) For compounds 2, 4_A , and 4_B , fill in the table below with *all* the components that make up 1) the inorganic vertices and 2) the organic linkers and pillars (distinguish these if they are different).

Compound	Inorganic Vertices	Organic Linkers and Pillars
2		
4 _A		
4 _B		

2) What is meant by pillared paddlewheel structure? State which compound(s) here fit that description.

Created	by	Amanda	Bowman,	Colorado	College	(abowman@c	coloradoc	ollege.edu),	and	posted	on	VIPEr
(www.ior	nicvi	per.org) c	on July 16, 2	2019. Copy	right Ama	ında Bowman,	2019. Th	is work is li	censed	l under	the C	reative
Commons	s At	tribution-	NonComme	ercial-Share	Alike 4.0) International	License.	To view a	copy	of this	licens	se visit
http://crea	ative	commons	s.org/about/	license/								

3) Based on the description and formula of complex 2 in Fig. 2, what do the purple square pyramids represent? The red octahedra?

4) Sketch a "top" view line drawing (with porphyrin ligand in the plane of paper) of one repeating unit, [FeTCPP](Fe₂)₄, of complex **2**. You may omit the bipyridine ligands from the sketch.

Created	by	Amanda	Bowman,	Colorado	College	(abowman@e	coloradoc	ollege.edu),	and	posted	on	VIPEr
(www.io	nicv	iper.org) o	on July 16, 2	2019. Copy	right Ama	anda Bowman,	, 2019. Th	nis work is lie	cense	d under	the Cı	eative
Common	ns A	ttribution-	NonCommo	ercial-Share	eAlike 4.0) International	License.	To view a	copy	of this	licens	e visit
http://cre	eative	ecommons	s.org/about/	license/								

5) What does the Mössbauer data for complex 4_B tell you about the structure and composition of the MOF? Describe the coordination number, geometry, and spin state of each iron environment.

6) How do the coordination number, geometry, and spin state of each iron environment in complex 4_A to compare with that of complex 4_B ? State how many distinct doublets you would expect for the Mössbauer spectrum of 4_A , and describe the relative isomer shifts and quadruple splittings you would expect for the doublets (you don't need to give specific values).