Created by S. Chantal E. Stieber, California State Polytechnic University Pomona (<u>sestieber@cpp.edu</u>) and posted on VIPEr (<u>www.ionicviper.org</u>) on February 11, 2019. Copyright S. Chantal E. Stieber, 2019. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license visit http://creativecommons.org/about/license/.

Activity: Advanced ChemDraw

Learning objectives:

Students will be able to:

- 1. Convey 3-D structure of a molecule in a drawing.
- 2. Recreate molecular drawings found in the literature.
- 3. Create digital drawings of molecules using ChemDraw
- 4. Create digital drawings of reaction schemes & cycles

Activity:

<u>Part A:</u> Each of the following structures was found in recently published papers. For each,

- 1. Determine the molecular formula of the complex.
- 2. Determine the approximate geometry around the metal center (ie. Octahedral, square planar...)
- 3. Recreate the drawing as best you can using Chemdraw.

<u>Complex 1:</u> Na, H.; Lai, P. –N.; Cañada, L. M.; Teets, T. S. "*Photoluminescence of Cyclometalated Iridium Complexes in Poly(methyl methacrylate) Films*," Organometallics, **2018**, DOI: 1 0.1021/acs.organomet.8b00446 (insert figure of molecule in top left of Chart 1)

<u>Complex 2:</u> Yamamoto, N.; Sato, Y.; Kayaki, Y.; Ikariya, T. "Synthesis and Reactivity of Cp*Ir^{III} Complexes with a C-S Chelate Displaying Metal/Sulfur Bifunctionality," Organometallics, **2018**, DOI: 10.1021/acs.organomet.8b00562 (insert figure of molecule D from Chart 2)

Created by S. Chantal E. Stieber, California State Polytechnic University Pomona (<u>sestieber@cpp.edu</u>) and posted on VIPEr (<u>www.ionicviper.org</u>) on February 11, 2019. Copyright S. Chantal E. Stieber, 2019. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license visit http://creativecommons.org/about/license/.

Part B: Each of the following reactions was found in recently published papers. For each,

- 1. Recreate the reaction scheme in Chemdraw
- 2. Be sure to watch out for everything being lined up, font types, colors
- 3. Use templates to help speed up drawing

Reaction 1: Xiong, Y.; Sun, Y.; Zhang, G. "Copper-Catalyzed Synthesis of β-Azido Sulfonates or Fluorinated Alkanes: Divergent Reactivity of Sodium Sulfinates," Org. Lett. **2018**, DOI: 10.1021/acs.orglett.8b02735

(insert figure of reaction scheme in TOC graphic, only showing the first product)

Reaction 2: Bowes, E. G.; Pal, S.; Love, J. A. "Exclusive Csp³-Csp³ vs Csp²-Csp³ Reductive Elimination from Pt¹V Governed by Ligand Constraints," J. Am. Chem. Soc. **2015**, 137, 16004-16007.

(insert figure of Scheme 1)

Created by S. Chantal E. Stieber, California State Polytechnic University Pomona (<u>sestieber@cpp.edu</u>) and posted on VIPEr (<u>www.ionicviper.org</u>) on February 11, 2019. Copyright S. Chantal E. Stieber, 2019. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license visit http://creativecommons.org/about/license/.

Challenge (5 points extra credit): Draw the following structure from the paper: Palumbo, C. T.; Darago, L. E.; Dumas, M. T.; Ziller, J. W.; Long, J. R.; Evans, W. J. *Structure, Magnetism, and Multi-electron Reduction Reactivity* of the Inverse Sandwich Reduced Arene La2+ Complex $[\{[C_5H_3(SiMe_3)_2]_2La\}_2(\mu-\eta^6:\eta^6-C_6H_6)]^{1-}$, Organometallics, 2018, 10.1021/acs.organomet.8b00523

(insert figure of the product from Scheme/Reaction 6)

<u>Part D:</u> Upload your Chemdraw file to blackboard by the end of the weekend.