Integrating the visual arts and inorganic chemistry

REBECCA M. JONES, PH.D. AUSTIN PEAY STATE UNIVERSITY jonesr@apsu.edu

JULY 31, 2008

20TH BIENNIAL CONFERENCE ON CHEMICAL EDUCATION INDIANA UNIVERSITY

Introduction

- APSU is a regional university in Clarksville, TN with 9,200 students
- Chemistry department has 8 faculty and graduates 10-15 majors per year
- One semester Inorganic Chemistry class for juniors and seniors.
- Experiments from the Chemistry in Art workshop were adapted for inclusion into Inorganic lecture and lab.

Purpose

- Share experience with integration of art concepts into Inorganic lecture and lab
- Discuss two main modules used in lecture and lab during past 3 classes.
 - Inorganic Pigments
 - Chemistry of Photography
- Highlight connections between inorganic chemistry and these art related topics.

Brief course outline

 Topics covered in 1-semester Inorganic Chemistry class at APSU

- Atomic Structure
- Inorganic Pigments
- Simple Bonding Models
- Symmetry
- Molecular Orbitals
- Acid/Base Chemistry
- Chemistry of Photography
- Coordination Chemistry

Art topics promote connections to real-world applications

Inorganic Pigments: Lecture

- Colorants: Inorganic Pigments and Indigo
 - Definitions
 - Brief history of colorants
 - Highlight chemical reactions of synthetic pigments
 - What causes color in inorganic pigments?
 - Ideal properties of pigments
 - × Lightfast, inert, insoluble, high opacity, uniform particle size

Inorganic Pigments: Lab Experiment #1

- Synthesis of inorganic pigments
 - Barium white (BaSO₄)
 - × $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2 NaCl$
 - Synthetic malachite (CuCO₃•Cu(OH)₂)
 - × CuSO₄ (aq) + NaHCO₃(s) → CuCO₃•Cu(OH)₂(s) + 2Na₂SO₄ + 3CO₂ + H₂O
 - Chrome yellow $(ZnCrO_4 \bullet Zn(OH)_2)$
 - × $K_2CrO_4(aq) + 2ZnCl_2 + 2NaOH \rightarrow ZnCrO_4 \bullet Zn(OH)_2(s) + 2NaCl + 2KCl$
 - Chrome Oxide Green (Cr₂O₃)
 - × Na₂Cr₂O₇ (s) + S₈ (s) + O₂ + heat \rightarrow Cr₂O₃ (s) + SO₂ (g)

Inorganic Pigments

Barium White

Synthetic Malachite

Chrome Yellow

Chrome Oxide Green

Inorganic Pigments: Lab Experiment #2

- White Pigment Analysis
- Student driven qualitative analysis experiment
 - Microscopic and macroscopic observations to identify an unknown pigment
 - Pigment samples
 - ★ Chalk or whiting (CaCO₃)
 - × Lead White (2 PbCO₃· Pb(OH)₂)
 - × Zinc White (ZnO)
 - × Gypsum (CaSO₄)
 - × Titanium White (TiO₂)
 - × Barium White (BaSO₄)
 - $\circ\,$ Available reagents such as 3M HNO_3 and KI and a polarizing light microscope are used in analysis

Chemistry of Photography: Lecture

• Photographic Chemistry

- Brief History
- Salted Paper Prints
 - × William Henry Fox Talbot 1840
 - Connected to acid/base chemistry
 - × Sensitizing Paper

• $NH_4Cl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NH_4NO_3(aq)$

× Development

• 3 AgCl (s) + light \rightarrow 2 Ag (s) + Cl₂ + AgCl (s)

× Fixing image

 $\circ \operatorname{AgCl}(s) + 2\operatorname{Na}_2S_2O_3(aq) \rightarrow \operatorname{Na}_3[\operatorname{Ag}(S_2O_3)_2](aq) + \operatorname{NaCl}(aq)$

Chemistry of Photography: Lecture

• Photographic Chemistry

- Cyanotypes
 - × Sir John Herschel 1842
 - × K_3 Fe(CN)₆ + $C_6H_8O_7$ ·nFe·nNH₃ → Fe[Fe(CN)₆]
 - Light sensitive Fe[Fe(CN)₆] absorbs into the support
 - \star Fe³⁺ + light \rightarrow Fe²⁺
 - × Fe²⁺ + [Fe(CN)₆]³⁻ \rightarrow KFe[Fe(CN)₆] \cdot 5 H₂O (s)
 - KFe[Fe(CN)₆] \cdot 5 H₂O (s) is Prussian Blue
- Alternative processes and toning
- Color and instant photography

Chemistry of Photography: Labs

General Supplies

- Clip frames and binder clips
- Support (watercolor paper or cotton)
- Paint trays and foam brushes
- Photographic negatives or transparencies
- Sunlight or Blacklight

Chemistry of Photography: Lab #1

• Silver Salted Prints

• Students compare different binder, starch or gelatin

Chemistry of Photography: Lab #2

Cyanotypes

• Students compare different supports, paper or cloth

To view a copy of this license visit: http://creativecommons.org/about/license/

Chemistry of Photography: Lab #3

- Design Your Own Photography Experiment
 - Students plan and carry out individual experiments related to the past weeks of photography experiments
 - Topics studied have included
 - What light sources work for cyanotypes?
 - **×** What exposure times are required for silver salted prints?
 - **×** How does wash temperature affect image quality?
 - × What stoichiometric ratio of reagents give the best print?
 - **×** Do other silver halides work as well as AgCl?
 - **×** Can silver halide chemistry be used on cloth?
 - The experiment concludes with a formal report

Student Comments

- "I really liked developing my own lab experiment. The photography experiment was definitely my favorite."
- "This lab was one of my favorites...I really enjoyed the photography experiments and am actually interested in doing some alternative photography on my own time."
- "The pigment labs were interesting. I learn best by seeing processes step by step."
- *"The labs applied new perspectives of chemistry which were both interesting and informative."*

- Student response has been overwhelming positive, even from those who do not normally enjoy lab or consider themselves creative.
- Enjoyable and interesting topics hold student attention and are useful for elucidating concepts like acid/base chemistry and synthetic methods.
- Design Your Own Experiment requires independent scientific thought
- The integration of experiments learned from the Chemistry in Art Workshop into my inorganic classes has been very successful.

Acknowledgments

- Robin B. Reed, Chair of APSU Department of Chemistry
- Mary C. Clay, undergraduate research student and lab assistant
- Patricia Hill and Michael Henchman, directors of Chemistry in Art Workshop, June 2005
- My inorganic students

