Lead Acid Car Batteries. In class exercise/ Discussion/Semester review

Created by Sheila Smith, University of Michigan- Dearborn (sheilars@umd.umich.edu) and posted on VIPEr (www.ionicviper.org) on May 26, 2010. Copyright Sheila Smith 2010. This work is licensed under the Creative Commons Attribution Non-commercial Share Alike License. To view a copy of this license visit http://creativecommons.org/about/license/.

The lead storage battery can be represented as

$$Pb_{(s)}, PbSO_{4(s)}|HSO_{4}^{-}_{(aq)}, H^{+}_{(aq)}||HSO_{4}^{-}_{(aq)}, H^{+}_{(aq)}||PbO_{2(s)}, PbSO_{4(s)}|$$

Write the balanced chemical equation represented by this notation.

E°_{cell}=2.04V (12 V is achieved by connecting 6 of these in series)

Calculate E_{cell} at 25°C for this battery when $[H_2SO_4] = 4.5 \, M$).

Using the Thermodynamic data given below, calculate ΔH° , ΔG° and ΔS° for the reaction.

Substance	ΔH _f ° (kJ/mol)	ΔG _f ° (kJ/mol)	S _f ° (kJ/mol)
$Pb_{(s)}$	0	0	64.89
$PbO_{2(s)}$	-276.65	-218.99	76.57
PbSO _{4(s)}	-918.4	-811.2	147.28
$H^{+}_{(aq)}$	0	0	0
HSO _{4 (aq)}	-885.75	-752.87	126.86
$H_2O_{(1)}$	-258.8	-237.2	69.9

Lead Acid Car Batteries. In class exercise/ Discussion/Semester review

Created by Sheila Smith, University of Michigan- Dearborn (sheilars@umd.umich.edu) and posted on VIPEr (www.ionicviper.org) on May 26, 2010. Copyright Sheila Smith 2010. This work is licensed under the Creative Commons Attribution Non-commercial Share Alike License. To view a copy of this license visit http://creativecommons.org/about/license/. Battery acid (in a fresh battery) is 37% by mass H₂SO₄. Calculate the molality and the molarity. The density of the solution is 1.29g/mL. Calculate the freezing point of this solution. Assume HSO_4 dissociation is negligible. (k_f for water is 1.86°C/m) What happens to the freezing point as the battery discharges? Discuss any possible reasons why/circumstances where this battery might not be useful.