How To Construct Ligand Group Orbitals (LGOs)

Deriving Ligand Group Orbitals

1) Start with a complete set of equivalent atomic orbitals (i.e., a complete set of orbitals is one in which any given orbital is taken into another or some combination of other orbitals by a symmetry operation in the point group of interest - the $4 \mathrm{H}(1 s)$ orbitals in CH_{4} constitute a complete set)
2) Determine the characters for reducible representations of all transformations involving the orbitals. For each orbital that is taken into itself by a symmetry operation, count +1 . For each that is taken into the negative of itself by a symmetry operation, count -1 . For each orbital that is moved into another orbital, count 0 . These characters will constitute a reducible representation, $\Gamma_{\text {red. }}$
3) Reduce $\Gamma_{\text {red }}$ into a set of irreducible representations. This can be done either by inspection (look and see what set of irreducible reps have characters that add up to those of $\Gamma_{\text {red }}$) or using our "failsafe formula":

$$
\begin{gathered}
a_{i}=\frac{1}{h} \sum_{R}\left(\chi^{R} \cdot \chi_{i}^{R} \cdot C^{R}\right) \\
a_{i}=\text { \# of times the irreducible representation } \Gamma_{i} \text { appears in } \Gamma_{\text {red }} \\
h=\text { order of the molecular point group } \\
R=\text { an operation in the group } \\
\chi^{R}=\text { character of the operation } R \text { in } \Gamma_{\text {red }} \\
\chi_{i}^{R}=\text { character of the operation } R \text { in } \Gamma_{i} \\
C^{R}=\# \text { of members in the class to which } R \text { belongs }
\end{gathered}
$$

Choose your own adventure:
4) Derive SALCs for the ligand group orbitals by inspection, using atomic orbitals as "generator functions", whose symmetry you match with your LGOs (this is the procedure we used for methane in class.

$\underline{O R}$

5) Use the "projection operator", \hat{P}, to construct symmetry-adapted linear combinations (SALCs) from the orbitals for each irreducible representation - THESE are your LGOs

The projection operator works on functions, so start by designating each symmetry-equivalent orbital with a function, ϕ_{i}. Thus, for a set of n orbitals, you should have n functions: $\phi_{1}-\phi_{n}$. To use the projection operator, you only need to take a single orbital from your complete set and use it to project an irreducible representation:

$$
\hat{P}_{\Gamma_{i \text { ired }}} \phi_{i}=\sum_{R} \chi_{\Gamma_{\text {itred }}}^{R} \cdot R\left(\phi_{i}\right)
$$

* For every operation (not just each class), $\chi_{\Gamma_{\text {irred }}}^{R}=$ character of $\Gamma_{\text {irred }}$ under R
* $R(\phi)=$ function resulting from operating R on ϕ_{i}
* For doubly or triply degenerate irreducible representations, this is a bit trickier because you will need to use the projection operator on multiple atoms to generate the correct \# of SALCs

How To Construct Ligand Group Orbitals (LGOs)

6) Final Optional Step: To normalize your linear combination, use the normalization factor:

$$
\text { for } a \phi_{1}+b \phi_{2}+c \phi_{3} \ldots \rightarrow \text { normalized function is } \frac{1}{\sqrt{a^{2}+b^{2}+c^{2} \ldots}}\left(a \phi_{1}+b \phi_{2}+c \phi_{3}+\ldots\right)
$$

