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Understanding Unoccupied (or empty) Space in Solid Structures

Recognizing that in solid structures there is often significant unoccupied, empty or open space is very helpful both in terms of a clear understanding of crystal structures but also in terms of recognizing open space is available to be utilized can helpful in understanding the structure and properties of inorganic solids.  To solidify your understanding of open space this activity asks you to calculate the amount of unoccupied space in a variety of basic crystal structures and compare and contrast your results.
Before you begin calculating specific numbers as requested below think qualitatively about what you expect.  Visualize a simple (or primitive) cube, a face-centered cube and a body-centered cube.  Which cubic structure do you think has the most unoccupied space?  Write a sentence or two explaining your reasoning.

Simple or Primitive Cubes

While simple or primitive cubes don’t often show up in chemical substances, it is nice to start our analysis of empty space with such a simple structure.  One element, Polonium (Po) has been shown to have a stable phase, referred to as -Po, whose structure is a simple cube.  X-ray crystallographers measured the length of the side of the cube to be 336 pm (R. J. DeSando and R. C. Lange, J. Inorg. Nucl. Chem., 1966, 28, 1837).

On the left is a drawing of one face of a simple or primitive cube with the atoms drawn to scale relative to the length of a side.  The second picture is a representation of the full cube.
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Assuming the atoms depicted to be Po, what is the radius of a Po atom?  Explain the reasoning behind your answer.

Now, calculate the volume of the cube.  What geometric formula did you have to remember to complete this calculation?

Figure out how many Po atoms reside completely within the cube.  (Hint: Remember each atom sits at a corner of the cube and that corner is shared by eight cubes.)

Again, drawing on your knowledge of geometry (or look up the necessary formula), calculate the volume of one Po atom.  Be sure and show your work, e.g., write down the formula used.

Multiply the volume of the atom by the number of atoms that reside completely within the cube.

Is the volume of the cube the same as the volume of the atoms contained within the cube?  Why or why not?

What is the fraction of empty space within the cube?  Explain how you arrived at your result.

Rather than talk about fraction of empty space inorganic chemists often refer to the “packing fraction” which is the fraction of space taken up by the atoms.  Use your calculation of the fraction of empty space to determine the packing fraction.

Although you were asked to do the calculation using experimental data known for a-Po would you get a different result if you were asked to use data for a different simple cubic structure?  Why or why not?

Face-centered cubes
The coinage metals all have a body-centered cubic phase, let’s use gold, Au, for our example.  Calculate the fraction of empty space and packing fraction for Au within a face-centered cubic structure knowing that X-ray crystallographers measured the length of the side of the cube to be 408 pm (A. Maeland and T. B. Flanagan, Can. J. Phys., 1964, 42, 2364.).  

On the left is a drawing of one face of a face-centered cube with the atoms drawn to scale relative to the length of a side.  The second picture is a representation of the full cube.
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Some intermediate calculations you will probably find useful: length of a face diagonal, radius of the atom, volume of an atom, volume of the cube, and number of atoms/cube.

Now that you’ve completed your calculations are your results dependent on our particular example or are your results more general?  Why do you think this?

How does the packing fraction and fraction of empty space for the face-centered cube compare to that of that of a simple cube?

Body-centered cubes
The alkali metals all have a body-centered cubic phase. Since we need to liven things up let’s use sodium, Na, for our example.  Calculate the fraction of empty space and “packing fraction” for Na within a body-centered cubic structure knowing that X-ray crystallographers measured the length of the side of the cube to be 429 pm (E. Aruja and H. Perlitz, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem., 1939, 100, 195.).  

On the left is a drawing of one face of a body-centered cube with the atoms drawn to scale relative to the length of a side.  Notice that the atoms are not touching along either an edge of the cube or along the face diagonal.  The second picture is a representation of the full cube.
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Some intermediate calculations you will probably find useful: length of a face diagonal in the unit cell, length of a body diagonal in the unit cell, radius of the atom, volume of an atom, volume of the cube, and number of atoms/cube.

Now that you’ve completed your calculations are your results dependent on our particular example or are your results more general?

How does the packing fraction and fraction of empty space for the body-centered cube compare to that of that of both the simple cube and the face-centered cube?

Putting ideas together and applying to a more complicated situation
Now that you have data about the packing fraction for all three types of basic cubic structures why do you think the simple cubic structure is not often found in nature?

Which structure (simple, face-centered or body-centered) would you choose if you wanted to pack the most material in the smallest volume?  Explain your choice.

As it turns out face-centered cubic structures are also referred to as cubic closest packing because of the density of material packed within a given volume.  If, rather than looking at the structure from the perspective of the unit cell, we try to orient the structure to look at layers of atoms we find an alternating row structure sometimes referred to as an ABCABCA… structure where the capital letters denote an offset for each particular row.  So the ABCA implies that in the first and fourth rows the atoms line up directly.  To visualize this take the face centered cube and balance it on one if its corners.  Consider the atom at the corner the cube is balanced on your first layer or A layer.  Your next layer is made up of six atoms, those on the next three lowest corners and the atoms on the three faces that touch at your balancing bottom corner, this is your B layer.  Your C layer consists of the atoms on the top three faces of the cube and the three corners along the same place as those atoms on the top faces.  The only atom we haven’t assigned to a layer is the atom at the top corner of your cube, which is on the fourth layer.  If you look at your cube balanced on its corner from above, you will notice that the top atom in the fourth layer, lines up directly with the bottom atom on which the cube is balancing, hence this layer is also an A layer.  If we extended the solid outward and upward you would find that there are two layers between layers that line up directly atom for atom.

From geometry it can be shown that an ABABA… layering also creates a packing structure as efficient as the cubic closest packing referred to as hexagonal closest packing.  The name comes from the shape of the unit cell resulting from this type of layering which is hexagonal rather than cubic. 

As was mentioned in the earlier, understanding these open spaces can be very helpful in visualizing more complex crystal structures.  The unit cell for sodium chloride, NaCl, can be visualized by considering the sodium ions in a face-centered crystal lattice and placing chloride ions in the empty space between the sodium atoms, often referred to as “holes” created the packing structure.

Given the figure below of the NaCl unit cell and the fact that X-ray crystallographers have determined the length of the side of a unit cell to be 564 pm (http://en.wikipedia.org/wiki/Sodium_chloride) calculate the radius of the Na+ and Cl-.  Some intermediate calculations you will probably find useful include, the length of a face diagonal, counting the number of Na+ radii along a diagonal and the number of Na+ and Cl- radii along an edge.
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Digging Deeper:

Does it surprise you that Na, an element that from periodic trends you would expect to be smaller than Po has a larger unit cell?  Write a few sentences that address this apparent inconsistency.

Could you re-do all your calculations without ever having a number for the length of a side of a cube?

Side distractions but fun/useful things to think about:

Given the reactivity of Na consider the experimental prowess of the scientist who measured Na crystal structure.

FYI: Chemists refer to the radii discussed in this handout as hard-sphere radii because there is an implicit assumption of a rigid edge to the atom, which you of course realize from class discussions about electron clouds to be an approximation.

Packing efficiency is packing fraction as a percentage, so a 0.78 packing fraction is a 78% packing efficiency.

Challenge Questions:

Calculate the empty space in a NaCl unit cell.

