Ligand effects in titration calorimetry from the Angelici lab

Submitted by Chip Nataro / Lafayette College on Mon, 05/23/2016 - 21:08
Description

This literature discussion focuses on a paper from the Angelici lab that examines the heat of protonation of [CpʹIr(PR3)(CO)] compounds. The compounds presented in the paper provide good introductory examples for electron counting in organometallic compounds. The single carbonyl ligand in these compounds provide an excellent probe to monitor the electron richness at the metal center which is impacted by the electron donor ability of the ligands.

Metal and Ionic Lattices Guided Inquiry Worksheet

Submitted by Adam Johnson / Harvey Mudd College on Mon, 05/16/2016 - 14:00
Description

This is a short worksheet that guides students through simple metal lattices (SCP, CCP, HCP) and how filling holes in these lattices results in ionic lattices (NaCl, CsCl, fluorite, etc.).

The worksheet was used as an in-class activity after students had read about the material in the text. This activity is probably suitable for first-year students, though I used it with juniors/seniors.

Ligand Field Correlations for Square Pyramidal Oxovanadium(III)

Submitted by Matt Whited / Carleton College on Fri, 04/22/2016 - 10:37
Description

Students work in groups to derive the ligand-field diagram for a square-pyramidal vanadium(III) oxo complex using octahedral V(III) as a starting point. The activity helps students to correlate changes in orbital energies as a function of changing ligands and geometry as well as rationalizing why certain geometries can be particularly good (or bad) for particular complexes. The activity also helps students see why oxo complexes of early metals are frequently best described as triple bonds.

Mix and Match Ligand Group Orbitals and Metal Orbitals

Submitted by samuelson / Indian Institute of Science on Thu, 03/31/2016 - 00:34
Description

Students are often presented with the finished MO correlation diagrams of molecules like bis benzene chromium or ferrocene in classes and in organometallic chemistry text books. This activity helps them match the ligand group orbitals of the two benzene rings with the metal valence orbitals. Their understanding and appreciation of such diagrams is significantly enhanced when they find out how only some matches have the appropriate symmetry requirements.

Isotopic labeling and reduced mass calculations for IR spectroscopy

Submitted by Adam Johnson / Harvey Mudd College on Sun, 03/27/2016 - 21:32
Description

I used this as an in class activity but it may work better as a problem set for your class. I had the students read the pertinent chapters of the textbook which go through symmetry and molecular vibrations, including using both stretches and cartesian axes as bases. In class, I divided the students up into four groups. Each group did one of the problems for 30 minutes and during the last 20 minutes of class, they reported out their solution. The students had not seen the Hooke’s law in the textbook so I included it as part of the activity.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

ColourLex - a colorful website!

Submitted by Vanessa / Albion College on Tue, 03/15/2016 - 13:49
Description

ColourLex (colourlex.com) is an amazing website that mixes chemistry and art. The creators of this website have extensively catalogued paintings and the pigments that were used to create them. The pigments range from artificial to natural and organic to inorganic. You can search for the specific combination that you want to see.

Writing Lab Reports

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 03/02/2016 - 14:14
Description

Each spring semester I take on the task of teaching and grading full lab reports for my senior advanced inorganic chemistry class. For most this is their first experience writing a document of this magnitude as most other labs they have previously taken require either lab report sheets or the occasional abbreviated lab memo. As I read their lab reports each year I am reminded both how challenging it is to teach writing (more specifically scientific writing) and to grade the reports objectively.

d orbital splitting in Trigonal Pyramidal Field

Submitted by Sheila Smith / University of Michigan- Dearborn on Sat, 02/27/2016 - 12:55
Description

This is a short critical thinking exercise that I use to assess whether my students have understood where the d orbital splitting in Octahedral and Tetrahedral geometry  comes from.  I do it at the beginning of the class after we discuss CFT/LFT in Oh and Td compounds.