Demonstration of Hard-Soft Acid-Base Theory: An Ion-Exchanger for Recovery of Rare Earth Metals

Submitted by Gary L. Guillet / Georgia Southern University Armstrong Campus on Wed, 07/08/2020 - 08:19
Description

The article from The Journal of the American Chemical Society by M. Kanatzidis et al describes a new ion-exchange material (FJSM-SnS) that shows high selectivity for rare-earth metals (REE) and very fast adsorption kinetics.  A number of techniques are used to characterize the properties of the compound that students may not be very familiar with but the article presents in an accessible way.

Inorganic Active Learning Lesson Plan Design
Description

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

Meghan / Indiana University Fri, 05/15/2020 - 09:05

Job's Method - The Covid-19 Version

Submitted by Chip Nataro / Lafayette College on Thu, 03/19/2020 - 23:03
Description

This is the classic Job's Method experiment from "Synthesis and Technique in Inorganic Chemistry" 2nd Ed. (1977 or 1986 pp 108-114) by R. J. Angelici. There are slight changes from the experiment published in the book but they just include running solutions with ethylenediamine mole fractions of 0.67 and 0.75, so details will not be provided. What is provided are a series of pictures and videos showing the experiment being performed. Also included are the raw files of the absorbance spectra in EXCEL.

Advanced Inorganic Chemistry

Submitted by Terrie Salupo-Bryant / Manchester University on Fri, 01/31/2020 - 16:02
Description

Many of the topics in this course have their origins in the topics that are covered in General Chemistry but are covered in more detail.  Many of the rules learned in General Chemistry are actually the exception.  Chemical systems are much more complicated than the simple models presented in a first year course.  The course begins with the electronic structure and periodic properties of atoms followed by discussion of covalent, ionic, and metallic bonding theories and structures.  Students also apply acid-base principles to inorganic systems.  The second half of the course is dedicated to t

Marvin suite from ChemAxon

Submitted by Anthony L. Fernandez / Merrimack College on Thu, 01/09/2020 - 12:10
Description

It is important for students to be able to effectively communicate the results of their scientific work. This does not only inlcude written and oral communication, but the creation of appropriate representations of the complexes they have investigated. It is crucial that students learn how to draw molecules using electronic structure drawing programs, but site licenses for structure drawing programs can be prohibitive for some institutions.

2019 Nobel Prize - Li-ion battery LOs

Submitted by Barbara Reisner / James Madison University on Wed, 10/09/2019 - 20:28

Congratulations to the 2019 recipients of the Nobel Prize - John B. Goodenough, M. Stan Whittingham and Akira Yoshino. It's a well deserved honor!

There are several LOs on VIPEr that talk about lithium ion batteries and related systems. The 2019 Nobel is a great opportunity to include something about these batteries in your class.

I hope to see more LOs in the coming weeks so we can bring this chemistry into our classrooms!

Introduction to Drago's ECW Acid-Base Model
Description

Colleen Partigianoni / Ferris State University Mon, 07/29/2019 - 18:24

Constructing a Class Acid-Base Titration Curve

Submitted by Nicole Crowder / University of Mary Washington on Tue, 07/09/2019 - 17:15
Description

In this in-class activity, each student calculates the inital pH, equivalence volume, and pH at the equivalence point for both a strong acid-strong base and a weak acid-strong base titration.

In addition, each student is assigned a unique volume before the equivalence point and a unique volume after the equivalence point for each titration curve.

The data from the class is then assembled in Excel to construct the two titration curves.

Inorganic Chemistry

Submitted by Caroline Saouma / University of Utah on Sun, 06/09/2019 - 14:52
Description

From syllabus: