Solid State Stoichiometry Activity

Submitted by George Lisensky / Beloit College on Mon, 06/27/2016 - 17:11
Description

The goal of this activity is to have students calculate the empirical formula of a compound given the contents of a unit cell. 

A repeating building block, or unit cell, is used to represent extended structures since shifting a unit cell along its edges by the length of the edge will exactly replicate the extended structure.

Solid State Stoichiometry Online

Submitted by George Lisensky / Beloit College on Mon, 06/27/2016 - 15:10
Description

The page has JSmol structures for unic cells including cubic, body centered cubic, and face centered cubic unit cells as well as for CsCl, Ni3Al, Cu2O, NaCl, CaF2, ZnS, diamond, Li3Bi, NaTl, NiAl and ReO3The advanced page also has triclinic, monoclinic, hexagonal, orthorhombic, and tetragonal cells with all possible centering.

Visualizing solid state structures using CrystalMaker generated COLLADA files

Submitted by Barbara Reisner / James Madison University on Wed, 06/22/2016 - 16:59
Description

Although I’m a solid state chemist, I still find it difficult to teach the visualization of solid state structures. I’m interested in any tool that helps my students visualize solids. My experience is that the more representations students can master, the more likely they are to find one that helps them understand solid state structures.

I’ve used many tools. These include

A model for every student: Visualizing solid state structures

Submitted by Barbara Reisner / James Madison University on Tue, 06/21/2016 - 13:11
Description

We do not cover extended solids (solid state materials) in our general chemistry program. With the exception of students who have taken a course in materials science, Inorganic Chemistry I is the first time our students have encountered solid state structure. Although they have built some visualization skills by working with molecules and symmetry, they do not have robust 3D visualization abilities and have trouble using the language of solid state chemistry (unit cells, packing, filling holes, coordination number, etc…) in the context of structure.

Metal and Ionic Lattices Guided Inquiry Worksheet

Submitted by Adam Johnson / Harvey Mudd College on Mon, 05/16/2016 - 14:00
Description

This is a short worksheet that guides students through simple metal lattices (SCP, CCP, HCP) and how filling holes in these lattices results in ionic lattices (NaCl, CsCl, fluorite, etc.).

The worksheet was used as an in-class activity after students had read about the material in the text. This activity is probably suitable for first-year students, though I used it with juniors/seniors.

Crystal Field Theory and Gems--Guided Inquiry

Submitted by Adam Johnson / Harvey Mudd College on Sat, 05/14/2016 - 21:42
Description

The colors of transition metal compounds are highly variable. Aqueous solutions of nickel are green, of copper are blue, and of vanadium can range from yellow to blue to green to violet. What is the origin of these colors? A simple geometrical model known as crystal field theory can be used to differentiate the 5 d orbitals in energy. When an electron in a low-lying orbital interacts with visible light, the electron can be promoted to a higher-lying orbital with the absorption of a photon. Our brains perceive this as color.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

ColourLex - a colorful website!

Submitted by Vanessa / Albion College on Tue, 03/15/2016 - 13:49
Description

ColourLex (colourlex.com) is an amazing website that mixes chemistry and art. The creators of this website have extensively catalogued paintings and the pigments that were used to create them. The pigments range from artificial to natural and organic to inorganic. You can search for the specific combination that you want to see.

Annotated List of Metal-Containing Structures in the Cambridge Structural Database Teaching Subset

Submitted by Anthony L. Fernandez / Merrimack College on Sat, 08/15/2015 - 00:46
Description

The Cambridge Crystallographic Data Centre (CCDC) provides many free programs that can be used to view and manipulate crystal structures. Additionally, they have made a subset of the Cambridge Structural Database (CSD) available for teaching purposes and many educational activities have been created to go along with this teaching subset (see link below). This teaching subset can be freely viewed through the WebCSD interface or can be used in the freely-available Mercury program. (Mercury is avaliable for Mac, Windows, and Linux systems.)

Interpreting XPS and CV data from an Electrocatalysis Publication

Submitted by Karen McFarlane Holman / Willamette University on Thu, 07/02/2015 - 20:32
Description

This is a learning object focused on analyzing a specific figure from a research article that show XPS and CV data on Ni(OH)2/NiOOH thin films that have incorporated Fe.