Inorganic Active Learning Lesson Plan Design

Submitted by Meghan Porter / Indiana University on Fri, 05/15/2020 - 09:05
Description

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

Electrochemistry: Galvanic Cells and the Nernst Equation

Submitted by William Polik / Hope College on Wed, 04/08/2020 - 10:08
Description

In this online Electrochemistry Experiment, students use an Electrochemical Cell Simulator to construct electrochemical cells, measure voltages, and interpret results.

 

Solid State Structures tutorial

Submitted by Terrie Salupo-Bryant / Manchester University on Sat, 03/14/2020 - 12:19
Description

This tutorial will introduce students to some of the three-dimensional crystal structures exhibited by ionic and metallic solids.  They will examine the simple cubic, body-centered cubic, face-centered cubic, and the hexagonal closest-packed systems.  To facilitate visualization of the structures at the atomic level, they will use the Crystal Explorer website at Purdue University.

iPad Screen Recording

Submitted by Anthony L. Fernandez / Merrimack College on Thu, 03/12/2020 - 10:46
Description

Many faculty and students now have iPads and Apple Pencils for use in their classes. At Merrimack, we have a 1:1 iPad program (called Mobile Merrimack) in which all students and faculty are provided an iPad and students are also given an Apple Pencil and a keyboard.

ChemCrafter

Submitted by Michelle Personick / Wesleyan University on Mon, 03/02/2020 - 16:24
Description

ChemCrafter, from the Science History Institute (formerly the Chemical Heritage Foundation), is a free iPad app that mimics a classic chemistry set. It is set up as a game, with three sections: reactions with water, reactions with acid, and salts. The app shows the progress of the reaction (smoke, color change, etc.) when two elements are mixed in a reaction vessel, and also gives the change in enthalpy of the reaction.

Cisplatin and Anticancer Therapy: The Role of Chemical Equilibrium

Submitted by Jack Eichler / University of California, Riverside on Thu, 02/20/2020 - 16:18
Description

This is a flipped classroom module that covers the concept of dynamic equilibrium, and how dynamic equlibrium plays a role in the anticancer mechanism of the therapeutic cisplatin.This activity is designed to be done at the end of the typical second quarter/second semester general chemistry equilibrium unit. Students will be expected to have learned the following concepts prior to completing this activity:

Case Study: Animal Migration and Isotopes

Submitted by Lyndsay Munro / University of Nevada on Tue, 02/11/2020 - 15:11
Description

This is an in-class case study activity that introduces relevancy between atomic structure (specifically isotopes) and animal migration.  Students will apply their knowledge of isotopes, writing atomic symbols, and calculating average atomic mass while also connecting this information to another application (in this case animal migration).  

Formal oxidation states in Ru-catalyzed water oxidation

Submitted by Margaret Scheuermann / Western Washington University on Fri, 01/17/2020 - 16:36
Description

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Students practice assigning oxidation states to complexes with aquo, oxo, superoxo, and hydroperoxo ligands then use this information to analyze a proposed water oxidation mechanism from the literature.

Time-Integrated Rate Laws and the Stability of Gold(III) Anticancer Compounds

Submitted by Jack Eichler / University of California, Riverside on Thu, 01/16/2020 - 14:55
Description

This is a flipped classroom module that covers the concepts of time-integrated rate laws. This activity is designed to be done at the end of the typical second quarter/second semester general chemistry kinetics unit. Students will be expected to have learned the following concepts prior to completing this activity:

Marvin suite from ChemAxon

Submitted by Anthony L. Fernandez / Merrimack College on Thu, 01/09/2020 - 12:10
Description

It is important for students to be able to effectively communicate the results of their scientific work. This does not only inlcude written and oral communication, but the creation of appropriate representations of the complexes they have investigated. It is crucial that students learn how to draw molecules using electronic structure drawing programs, but site licenses for structure drawing programs can be prohibitive for some institutions.