Colored Note Cards as a Quick and Cheap Substitute for Clickers

Submitted by Chris Bradley / Mount St. Mary's University on Tue, 07/17/2012 - 10:23
Description

For many years I have resisted using clickers, mainly because at our university there is no standard universal clicker. I wanted to keep student costs as low as possible but also desired the type of live feedback during a lecture that clicker questions can provide. In both my general chem. (200-300 students) and upper division courses (50-75 students), I now pass out 4 or 5 colored notecards on the first day of class and make sure everyone has one of each color.

Simple synthesis of MoO2(acac)2 and evaluation of spectra

Submitted by Patricia Stan / Taylor University on Mon, 07/16/2012 - 15:23
Description

A very simple lab synthesis that allows the student to carry out a coordination reaction and then look at the NMR and IR spectra.  I use this as a first lab to introduce them to using the NMR and IR.  If students work through the spectroscopy tutorial they should be able to explain the IR and NMR spectra.

Quiz Show Review of Simple Bonding Theory

Submitted by Carol Breaux / College of the Ozarks on Mon, 07/16/2012 - 15:13
Description

 

This is a powerpoint quiz show review that can be used to help students assess themselves on their level of understanding of simple bonding theory and some simple molecular orbital theory. It is appropriate for use in a general chemistry course or at the beginning of an advanced inorganic chemistry course to review simple bonding theory.  It was developed as an alternative to using clickers for those departments that do not have clickers or would prefer not to set up clicker questions.  Correct answers are shown at the end of each slide. 

Learning to Search the Chemical Literature

Submitted by Nicole Crowder / University of Mary Washington on Mon, 07/16/2012 - 11:27
Description

This assignment is intended as an introduction to searching the chemical literature to identify an article on specific topic (in this case a specific metal within a specified time range). Once they have located their articles, they are expected to name a metal complex and give the oxidation state, d electron count, and geometry.

NMR Coin-Flip Game

Submitted by azmanam / Butler University on Fri, 06/15/2012 - 09:19
Description

A simple coin-flipping game to help students understand the origin of spin/spin splitting in 1H NMR.

VIPEr Screencast

Submitted by Chip Nataro / Lafayette College on Wed, 05/09/2012 - 10:27
Description

This screencast is a brief introduction to some of the features of VIPEr.

The Periodic Table of Life

Submitted by Katherine Franz / Duke University, Department of Chemistry on Fri, 04/20/2012 - 08:50
Description

A little more than 5 slides, this is a video I made for a colleague to use in General Chemistry as an intro, or hook, into exciting topics in chemistry (in this case, bioinorganic).  I use these slides as an intro to my junior/senior Inorganic course on the first day of class, to ask the question "What is Inorganic Chemistry?" and get them to think about the "living" parts of "inorganic".  Topics include an overview of essential, toxic, and medicinally active elements of the periodic table, key examples of metalloprotein active sites, and an overview of the functional roles of biological in

Comprehensive Character Tables and Reducible Representation Tool

Submitted by Austin Scharf / Oxford College of Emory University on Wed, 01/11/2012 - 11:05
Description

This site is an excellent, well-organized collection of the chemically relevant character tables.  I find it particularly helpful because it includes the cubic functions, allowing you to determine the symmetry labels of the f orbitals in a given point group; these are not included in most of the collections of character tables in general inorganic chemistry textbooks.  Additionally, it has a tool that automatically reduces (correctly derived) reducible representations into their component irreducible representations.

How does changing solvent affect redox potential?

Submitted by Sheila Smith / University of Michigan- Dearborn on Wed, 09/21/2011 - 11:32
Description

There are three ways to modulate the redox potential of a metalloenzyme:  Changing ligands, changing geometry, and changing solvent. When I introduce this topic in Bioinorganic, I try to give my students concrete examples of each.  I love this one because it applies what they learned in Gen Chem about the Nernst Equation to a biological problem.  Granted, I don't use a metalloenzyme as my example, but I do pull the biological chemistry into it at the end, by referrring to the cytochrome oxidase/O2 couple.