Upper Division

3 Mar 2019

Supramolecular Chemistry Videos

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

I have yet to use this resource with students and therefore have no assessment of student learning to share at this time.

Evaluation Results: 

I have yet to use this resource with students.

Description: 

The Rebek Laboratory homepage contains information on and molecular visualizations of a variety of host-guest systems developed by the research group over several decades. The theme behind this set of examples is the use of hydrogen-bonding to achieve self-assembly. Under the "Research" tab, one can find four videos with narration: an introduction to molecular assembly and three videos of specific examples of self-assembled host systems (the cavitand, the cylinder and the volleyball). In addition, at the bottom of the tab, there are links to JSmol files for 5 host systems (tennis ball, jelly donut, cylindrical capsule, softball, and tetrameric capsule) that allow the assemblies to be visualized interactively.

 

This is a great resource for faculty looking for ways to incorporate the new ACS Committee on Professional Training guidelines to discuss macromolecular, supramolecular, mesoscale and nanoscale systems within the framework of their existing curricula.

Corequisites: 
Learning Goals: 

I have not yet used this resource with students but here are some possible relevant learning goals.

After viewing the Rebek Laboratory Homepage web source, students will be able to:

1) classify various self-assembled host-guest systems by the number of molecular components forming the assembly

2) identify the number and position of the hydrogen bonds that are responsible for the assembly of each host

3) identify the functional groups on the components of the host systems that are responsible for hydrogen bonding

4) state the experimentally determined percent volume of space generally occupied by guests that are encapsulated in these host systems

 

Subdiscipline: 
Implementation Notes: 

I have yet to use this website in my teaching but I hope that it may be a resource in expanding our curriculum in supramolecular chemistry.

Time Required: 
depends on use
12 Feb 2019

Advanced ChemDraw (2019 Community Challenge #2)

Submitted by S. Chantal E. Stieber, Cal Poly Pomona
Evaluation Methods: 

Students were evaluated during class for effort and participation, and the instructor gave immediate tips and feedback. After students submitted the assignment, it was graded for completion and effort.

 

Evaluation Results: 

Students were allowed to turn in the assignment 2 days later and 22/24 students completed the assignment. The most common errors were slight variances in bond angles and missing colors used in the literature figures. Overall, the quality of the submitted work was impressive, especially for second-year students.

Description: 

This in-class activity was designed for a Chemical Communications course with second-year students. It is the second part of a two-week segment in which students learn how to use ChemDraw (or similar drawing software to create digital drawings of molecules).

In this activity, students learn advanced techniques to visualize complex organometallic molecules and reaction schemes using ChemDraw. Students are presented with several images and reaction schemes taken directly from the organometallic literature and are tasked with recreating the images using ChemDraw. This gives students direct exposure to current literature, while learning useful skills in chemical visualization.

Learning Goals: 

Students will be able to:

1.    Convey 3-D structure of a molecule in a drawing.

2.    Recreate molecular drawings found in the literature.

3.    Create digital drawings of molecules using ChemDraw.

4.    Create digital drawings of reaction schemes & cycles.

Equipment needs: 

Computer for each student with ChemDraw installed.

Implementation Notes: 

This was implemented in a 24-student course in the week following an introduction to basic ChemDraw use. Students were shown the techniques in lecture format using the attached Powerpoint presentation. After the presentation, students had access to the slides and could refer to them while completing the activity. 

In-class most students were mostly able to complete the worksheet using the powerpoint slides as a guide. However, the instructor also walked around to give individual tips and instruction. 

The total time for the activity and lecture was 1 hour 50 min, but it could be shortened or assigned for homework.

In the section where students are asked to interpret molecular formulas, this is done ignoring ligand abbreviations, such as R groups or simplifications of chelating ligands. This could be left off, however it was a useful way to introduce students to drawing simplifications they may find in the literature. Most students just interpreted the formula based on what was drawn, and some students looked up the original papers to get a more accurate formula (although this takes much more time). 

 

Time Required: 
60-110 min
31 Jan 2019
Evaluation Methods: 

Students were evaluated informally as I walked around to help the groups as well as during presentations.

Evaluation Results: 

A large majority of the students had no problem making assignments for the simple and intermediate cases.  This outcome is largely a testament to the ease of use of the CBC method.  In fact, students who had no background in inorganic or organometallic chemistry tended to perform a little better because they were less likely to bring in preconceptions about "oxidation state".

Students struggled a bit with the Z-type Ga ligand, which is great because it helped them move forward in understanding the periodic relationship to Al and B.  Students also struggled a bit with the cyclic (alkyl)aminocarbene ligands in the cobalt dimer, since they had not seen those before.

 

Description: 

This in-class group activity extends my original post by providing more examples of varying difficulty for students to assign MLXZ classifications and electron counts to organometallic complexes.  The answers to these are unambiguous within the CBC system, but they provide excellent starting points for conversation with students about bonding formalisms with organometallics.

Learning Goals: 

* Students should be able to use the covalent bond classification method to assign MLXZ classifications to a variety of organometallic complexes.

* Students should be able to defend their assignments using both organic and inorganic views of structure and bonding.

* Students will understand the ambiguities associated with assigning bond orders, valencies, oxidation states, etc., with the hope that their understanding of covalently bonded organometallic systems will become more nuanced.

 

Course Level: 
Corequisites: 
Implementation Notes: 

I split students into groups of 3, as noted in the handout.  Since this was a small class, I used 10 problems (all 7 from this handout and 3 from the earlier activity) and each student presented one answer.  Students took about 25 minutes to work through the problems, and then I had the students present and encouraged questions and challenges to their assignments.  The students brought several interesting insights that deepened their understanding of bonding and the connection between Organic Chemistry (which they have all taken) and Inorganic/Organometallic Chemistry (which most of them have not seen).

 

Time Required: 
45 minutes
31 Jan 2019
Description: 

This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride. 

 

Corequisites: 
Learning Goals: 

A student will be able to explain bridging hydride bonding

A student will be able to perform electron counting on a chromium comples with a bridging hydride

A student will be able to interepret calculated DFT molecular orbitals. 

Time Required: 
15 min
Evaluation
Evaluation Methods: 

This was provided as supplementary material outside of lecture. 

28 Jan 2019
Evaluation Methods: 

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer.  It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article reports a systematic study of a series of homogeneous catalysts for the conversion of glycerol to lactic acid.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-       Apply the CBC electron-counting method to homogeneous catalysts.

-       Understand the effect of metal and/or metal oxidation state on catalyst activity.

-       Understand the effect of ligand and/or ligand charge on catalyst activity.

-       Understand the differences between microwave and conventional heating.

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group. A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”. [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with materials given one week in advance
28 Jan 2019
Evaluation Methods: 

A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”.

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Christopher Lasterand Patrick Wilson.  It is based on the article “Deca-Arylsamarocene: An Unusually Inert Sm(II) Sandwich Complex” by Niels J. C. van Velzen and Sjoerd Harder in Organometallics 201837, 2263−2271. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article presents a study of the reactivity of bulky CpAr-Et/iPrSm complexes that is contrasted to the more well-known Cp*2Sm.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-      Be more familiar with the chemistry of sandwich samarocene complexes.

-      Understand how bulky ligands affect structure and reactivity in a sandwich complex.

-      Apply the CBC method to identify ligand functions and metal valence number/ligand bond number.

-       Understand how XRD bond distances can help determine a ligand charge.

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group.  [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with materials given one week in advance
16 Jan 2019
Evaluation Methods: 

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article presents a mechanistic study of hydroamination reactions catalyzed by a late transition metal complex.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-  Apply the CBC electron-counting method.

-  Understand how 31P {1H} NMR can help differentiate intermediates.

-  Use information provided by Eyring plots.

-  Understand how a catalyst resting state and turnover-limiting step can be identified.

-  Understand the role of kinetics in mechanistic investigations.

-   Appreciate how proposed reaction mechanisms can be evaluated.

 

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group. A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”. [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with discussion materials given one week in advance

Pages

Subscribe to RSS - Upper Division