Advanced Inorganic Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/10/2018 - 18:20
Description

Modern concepts of inorganic and transition-metal chemistry
with emphasis on bonding, structure, thermodynamics, kinetics and
mechanisms, and periodic and family relationships. Atomic structure,
theories of bonding, symmetry, molecular shapes (point groups), crystal
geometries, acid-base theories, survey of familiar elements, boron
hydrides, solid-state materials, nomenclature, crystal field theory,
molecular orbital theory, isomerism, geometries, magnetic and optical
phenomena, spectra, synthetic methods, organometallic compounds,

Investigating the toxicities of metals and identifying cadmium centers in metallothioneins

Submitted by Chantal Stieber / Cal Poly Pomona on Sat, 06/03/2017 - 14:43
Description

This activity was designed as an in-class group activity, in which students begin by using basic principles to predict relative toxicities and roles of metals in biological systems. Students then learn about the structures of metallothioneins using information from the protein data bank (PDB) and 113Cd NMR data. By the end of the activity, students will have analyzed data to identify and determine bonding models and coordination sites for multiple cadmium centers in metallothioneins. It is based on recent literature, but does not require students to have read the papers before class.

Diverting Wilkinson's Catalyst: Critical Analysis of a Literature Paper

Submitted by Matt Whited / Carleton College on Tue, 02/21/2017 - 18:52
Description

This LO is a problem-set-style literature discussion that leads students through a critical analysis of an interesting but flawed paper from the recent chemical literature.  Students use the questions to help them work through the paper prior to class, providing plenty of raw material for an in-class discussion about various aspects of the work from a mechanistic organometallic perspective.  The questions help students critically analyze substrate tables, spectroscopic data, and computational results from DFT.

calistry calculators

Submitted by Adam Johnson / Harvey Mudd College on Wed, 01/18/2017 - 18:17
Description

I just stumbled on this site while refreshing myself on the use of Slater's rules for calculating Zeff for electrons. There are a variety of calculators on there including some for visualizing lattice planes and diffraction, equilibrium, pH and pKa, equation balancing, Born-Landé, radioactive decay, wavelengths, electronegativities, Curie Law, solution preparation crystal field stabilization energy, and more.

I checked and it calculated Zeff correctly but I can't vouch for the accuracy of any of the other calculators. 

Inorganic Chemistry for Geochemistry and Environmental Sciences Fundamentals and Applications by George W. Luther III

Submitted by Rachel Narehood Austin / Barnard College, Columbia University on Wed, 01/04/2017 - 16:10
Description

This is a great new textbook by George Luther III from the University of Delaware.  The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines.  It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will  need to explain inorganic processes in the environment.

The Monsanto acetic acid process

Submitted by Chip Nataro / Lafayette College on Thu, 12/29/2016 - 18:12
Description

This literature discussion is based on one of early papers detailing the mechanism for the Monsanto acetic acid process (J. Am. Chem.

Online Homework for a Foundations of Inorganic Chemistry Course

Submitted by Sabrina Sobel / Hofstra University on Mon, 06/27/2016 - 18:08
Description

The Committee on Professional Training (CPT) has restructured accreditation of Chemistry-related degrees, removing the old model of one year each of General, Analytical, Organic, and Physical Chemistry plus other relevant advanced classes as designed by the individual department. The new model (2008) requires one semester each in the five Foundation areas: Analytical, Inorganic, Organic, Biochemistry and Physical Chemistry, leaving General Chemistry as an option, with the development of advanced classes up to the individual departments.

Ligand effects in titration calorimetry from the Angelici lab

Submitted by Chip Nataro / Lafayette College on Mon, 05/23/2016 - 21:08
Description

This literature discussion focuses on a paper from the Angelici lab that examines the heat of protonation of [CpʹIr(PR3)(CO)] compounds. The compounds presented in the paper provide good introductory examples for electron counting in organometallic compounds. The single carbonyl ligand in these compounds provide an excellent probe to monitor the electron richness at the metal center which is impacted by the electron donor ability of the ligands.