Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48
Description

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Helping Students with Visual Impairments See Colors

Submitted by Doug Balmer / Warwick High School on Fri, 05/31/2019 - 12:05
Description

I have had some students in class have a hard time identifying colors (flame tests, solution color, acid-base indicators, etc.) because of a visual impairment. There are many cell-phone apps that are helpful in aiding these students. "Pixel Picker" allows the students to load a picture from a device (cell phone, ipad). This is helpful because students are now dealing with a "frozen" image. Moving the cross-hair to different parts of the picture changes the R-G-B values. The "Color Blind Pal" app uses a more qualitative approach.

Inorganic Chemistry

Submitted by Gary Guillet / Furman University on Thu, 04/25/2019 - 16:02
Description

Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.

Inorganic Chemistry

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 02/13/2019 - 14:25
Description

Catalog Description:  Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.

Inorganic Chemistry

Submitted by Steven Girard / University of Wisconsin - Whitewater on Fri, 02/01/2019 - 11:58
Description

This course is composed of two components:

A. Lecture:

Inorganic Chemistry

Submitted by James F. Dunne / Central College on Tue, 01/29/2019 - 16:16
Description

This course is an introduction to the field of inorganic chemistry.  The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity.  These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.

Descriptive Inorganic Chemistry

Submitted by Catherine McCusker / East Tennessee State University on Wed, 01/16/2019 - 16:26
Description

This course is designed to give an introduction to the concepts of electronic structure, bonding,

and reactivity in inorganic chemistry. The field is too vast to comprehensively cover every aspect in

a single semester, so this class will offer a qualitative overview of inorganic chemistry. Reading and

understanding scientific literature is an important skill for any scientist to have, whether you move

on to grad school, professional school, or the job market, so relevant literature articles will be

Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.