Inorganic Chemistry
Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.
Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.
An introduction to the chemistry of inorganic compounds and materials. Descriptive chemistry of the elements. A survey of Crystal Field Theory, band theory, and various acid-base theories. Use of the chemical and scientific literature. Introduction to the seminar concept.
CHEM 4654 (CRN: 10411) and the accompanying lab (CHEM 4654L) is worth 4 credit hours. CHEM 4654 covers atomic theory and spectroscopy, periodic properties, descriptive chemistry, inorganic structure and bonding, coordination chemistry, organometallic chemistry, symmetry and group theory. Students must be concurrently enrolled in CHEM 4654L (CRN: 10412).
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."
This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry. Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)
Course Description: An overview course covering the fundamental principles and theories of inorganic chemistry, with emphasis on the chemistry of d-block elements. Included topics are molecular structure, electronic structure and spectra, bonding descriptions and reaction mechanisms of coordination complexes along with an introduction to organometallic compounds of d-block elements and an introduction to molecular symmetry and point groups.
Structure and bonding in inorganic systems are the general subjects of this course. Both main group and transition metal chemistry are discussed.
This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry. After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced. A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory. The students will use symmetry and group theory approaches to understand central atom hybridization, ligand