Ferrocene acylation - The Covid-19 Version
This is the classic Chromatography of Ferrocene Derivatives experiment from "Synthesis and Technique in Inorganic Chemistry" 3rd Ed. (1986 pp 157-168) by R. J. Angelici.
This is the classic Chromatography of Ferrocene Derivatives experiment from "Synthesis and Technique in Inorganic Chemistry" 3rd Ed. (1986 pp 157-168) by R. J. Angelici.
This is the classic Job's Method experiment from "Synthesis and Technique in Inorganic Chemistry" 2nd Ed. (1977 or 1986 pp 108-114) by R. J. Angelici. There are slight changes from the experiment published in the book but they just include running solutions with ethylenediamine mole fractions of 0.67 and 0.75, so details will not be provided. What is provided are a series of pictures and videos showing the experiment being performed. Also included are the raw files of the absorbance spectra in EXCEL.
This was a short LO developed to give the students some context for ionic liquids in use. Since this paper is from a chemical engineering perspective, it supported a goal of having the students think about chemistry outside of the typical inorganic journal/research boundaries. This LO was implemented after a discussion of HSAB/ECW, frustrated Lewis pairs, non-aqueous media, and superacids. No explicit discussion of catalysis prior to this class discussion.
Many of the topics in this course have their origins in the topics that are covered in General Chemistry but are covered in more detail. Many of the rules learned in General Chemistry are actually the exception. Chemical systems are much more complicated than the simple models presented in a first year course. The course begins with the electronic structure and periodic properties of atoms followed by discussion of covalent, ionic, and metallic bonding theories and structures. Students also apply acid-base principles to inorganic systems. The second half of the course is dedicated to t
Inorganic chemistry interfaces and overlaps with the other areas of chemistry. Inorganic chemists synthesize molecules of academic and commercial interest, measure properties such as magnetism and unpaired electron spin with sophisticated instruments, study metal ion uptake in living cells, and prepare new materials like photovoltaics. Inorganic chemistry is a diverse field, and we will only be able to touch on some of the chemistry of the 118 elements that currently reside in the periodic table.
This is a flipped classroom activity intended for use in a first semester general chemistry course.
This experiment was developed for an upper division Instrumental Analysis course to give students additional experience with infrared (IR) spectroscopy beyond the routine functional group identification encountered in undergraduate Organic Chemistry courses. It shares some aspects with the analysis of gas phase rovibrational spectra typically performed in Physical Chemistry courses, but places a greater emphasis on more practical considerations including data acquisition (using ATR) and interpretation.
From syllabus: