Inorganic Chemistry

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/22/2018 - 10:45
Description

Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.

Inorganic and Materials Chemistry

Submitted by Karen S. Brewer / Hamilton College on Mon, 01/15/2018 - 17:12
Description

Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.

Inorganic Chemistry II

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 14:03
Description

This course uses molecular orbital theory to explain the electronic structure and reactivity of inorganic complexes. Topics include symmetry and its applications to bonding and spectroscopy, electronic spectroscopy of transition-metal complexes, mechanisms of substitution and redox processes, organometallic and multinuclear NMR.

 

Additional notes

I do not require a formal text but George Stanley's organometallic chemistry 'book' on VIPEr is made available to students (the link is found below).

What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).

Chapter 21--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:53
Description

Chapter 21 from George Stanley's organometallics course, Polymerization

 

this chapter covers the history of polymerization reactions.

Unlike the vast majority of the chapters in this series, there are no powerpoint slides for this chapter.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 20--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:48
Description

Chapter 20 from George Stanley's organometallics course, Metathesis

 

this chapter covers the history of metathesis reactions.

Unlike the vast majority of the chapters in this series, there are no powerpoint slides for this chapter.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 19--Stanley Organometaliics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:34
Description

Chapter 19 from George Stanley's organometallics course, Polymerization and Metathesis

 

this chapter covers polymerization catalysis and olefin metathesis.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.