Inorganic Chemistry

Submitted by Caroline Saouma / University of Utah on Sun, 06/09/2019 - 14:52
Description

From syllabus:

Advanced Inorganic Chemistry

Submitted by Weiwei Xie / Louisiana State University on Sun, 06/09/2019 - 12:11
Description

Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory

The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements

Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods

Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.

 

Inorganic Chemistry

Submitted by Craig M. Davis / Xavier University on Sun, 06/09/2019 - 09:09
Description

Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.

Inorganic Chemistry I

Submitted by Brad Wile / Ohio Northern University on Sun, 06/09/2019 - 08:55
Description
Bonding, structures, preparation, properties, compounds, and reactions
of main group and transition metal elements. Offered fall semester.

Intermediate Inorganic Chemistry, Spring 2019

Submitted by Jason D'Acchioli / University of Wisconsin-Stevens Point on Sun, 06/09/2019 - 08:54
Description

An introduction to the chemistry of inorganic compounds and materials. Descriptive chemistry of the elements. A survey of Crystal Field Theory, band theory, and various acid-base theories. Use of the chemical and scientific literature. Introduction to the seminar concept. 

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

The Synthesis and Electronic Structure of [NiX4]2- Complexes and the Role of Crown Ethers in Inorganic Synthesis

Submitted by Wes Farrell / United States Naval Academy on Thu, 06/06/2019 - 15:05
Description

This literature discussion aims to have students in an advanced inorganic chemistry course interpret reaction schemes and electronic spectra, relate chemical formulae to molecular structure, and gain an understanding of how inorganic synthesis is planned and executed.  Students should gain an understanding of how counterions and crown ethers affect structure. Question 7 may be expanded to ask students to why pi-donor ability affects ligand field splitting, or as an introfuction to this topic.

An associated 1FLO based on this paper is linked in the related content.

 

Zinc-Zinc Bonds (Expanded and Updated)

Submitted by Wes Farrell / United States Naval Academy on Wed, 06/05/2019 - 11:42
Description

This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams.