Energy Nuggets: Wise Energy Use – The Challenge of Nitrogen Fixation

Submitted by Maggie Geselbracht / Reed College on Tue, 06/16/2009 - 01:33
Description
This literature discussion activity is one of a series of “Energy Nuggets,” small curricular units designed to illustrate: The Role of Inorganic Chemistry in the Global Challenge for Clean Energy Production, Storage, and Use.

Energy Nuggets: MOF’s for CO2 Sequestration

Submitted by Maggie Geselbracht / Reed College on Thu, 06/04/2009 - 03:50
Description
This literature discussion activity is one of a series of “Energy Nuggets,” small curricular units designed to illustrate: The Role of Inorganic Chemistry in the Global Challenge for Clean Energy Production, Storage, and Use.

Catalytic cycles and artistry: Chalk Drawing 101

Submitted by Adam Johnson / Harvey Mudd College on Wed, 04/15/2009 - 14:19
Description

This is how I always end my organometallics unit in my advanced inorganic chemistry class.  The students have already learned electron counting, the major reaction types (oxidative addition (OA), reductive elimination (RE), 1,1- and 1,2-insertion, β­-hydrogen elimination, and [2+2] cycloadditi­ons), and have gone through naming elementary steps in class for some classic catalytic cycles (hydrogenation with Wilkinson's catalyst and the Monsanto acetic acid process).

Open-ended Recrystallization Addition to the Traditional M(acac)3 Laboratory

Submitted by Hilary Eppley / DePauw University on Fri, 04/03/2009 - 10:14
Description

In this open-ended activity, students design crystallizations to can see who can grow the biggest crystals of their colorful products. This addition is something that I add to the standard M(acac)3 syntheses that many of us do as an introductory lab in an upper level course or as a final lab in an introductory type course. Syntheses of the M(acac)3 starting materials are available in most published inorganic laboratory manuals.

Inorganic Challenges

Submitted by Patrick Holland / Yale University on Tue, 03/10/2009 - 15:39
Description

The Interactive Inorganic Challenge Forum is a resource for inorganic chemistry teachers who want to incorporate team learning questions (“Challenges”) into an upper level undergraduate inorganic course. Through this site, teachers can exchange their ideas with others who have used inorganic chemistry Challenges. As a result, students benefit from field-tested group questions.

Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl, AuCl, and Au+) Derived from a Triphosphine-Borane

Submitted by Lori Watson / Earlham College on Sun, 03/08/2009 - 15:21
Description
This is a guided set of questions for the paper: Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl,
AuCl, and Au+) Derived from a Triphosphine-Borane.  It was used to help students integrate the study of a variety of techniques (for example NMR, X-ray, computational studies) and basic organometallic chemistry into reading a "real" paper.

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Bonding and Electronic Structure of a 14-electron W(II) bound to 4-electron pi-donors

Submitted by Hilary Eppley / DePauw University on Sun, 01/11/2009 - 12:01
Description

This paper is a meaty communication that covers novel bonding of 4 e- π-donors to a 14-electron species. Requires students to apply their knowledge of electron counting and organometallic bonding to ligands that are acting in novel ways.  This also includes exercises dealing with chemical information and general questions that require students to put the science in context. 

Identifying residual solvents

Submitted by Joe Fritsch / Pepperdine University on Thu, 06/26/2008 - 14:50
Description
Identifying residual solvents is important in helping students to interpret their NMR spectra and in the preparation of elemental analysis samples.  I have found the NMR work of Gottlieb and Nudelman to be valuable in my research and the teaching lab. The tabular data for many residual solvents in common NMR solvents for both proton and carbon spectra has been extremely valuable. Interpreting an NMR spectrum containing a residual solvent becomes  easier when the chemical shifts and multiplicity for the solvent are known.