Modeling the FeB center in Bacterial Nitric Oxide Reductase: A Reading Guide

Submitted by Sheila Smith / University of Michigan- Dearborn on Fri, 02/24/2012 - 11:52
Description

In 2011, I was fortunate to have Nicolai Lehnert come and speak to my bioinorganic class on his work modeling the FeB (non heme iron) center in bacterial Nitric Oxide reductase.  He suggested this paper to prepare the students for his talk and I developed this reading guide to help them (the students) get more out of the reading.

CBC (Covalent Bond Classification) Method of Electron Counting

Submitted by Chip Nataro / Lafayette College on Thu, 02/02/2012 - 12:29
Description

This series of slides works through an example of electron counting using the CBC (Covalent Bond Classification) method. It compares and contrasts the classic ionic and covalent methods to the CBC method. The example used in these slides is an exception to the 18 electron rule using the the classic methods, but by CBC classification it is a very common ML4X4 tetravalent 16 electron Ti compound.

Inorganic Nomenclature and Point Group Identification: Combined In Class exercise

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 01/26/2012 - 09:44
Description

I use this exercise in my 400-level Inorganic (Transition Metals) course.  Students have been introduced to assigning point groups in a 300- level Inorganic course on bonding theories.  Therefore, I combine a review of assigning point groups with the introduction to inorganic nomenclature in my advanced course.  This seems to break up the tedium of the rules for nomenclature while stressing that the need for such elaborate names comes from the need to correctly identify one structure among may isomeric possibilities.

Energy Nugget: Methane to Methanol

Submitted by Hilary Eppley / DePauw University on Thu, 01/12/2012 - 05:40
Description

This learning object was developed with a lot of help from B. Scott Williams from the Keck Science Department of the Claremont Colleges for my junior/senior level course in 2009.   This object is a literature discussion on the topic, but Scott and I hope to add a 5-slides about learning object to go with it shortly.   The primary literature article used for the discussion is “Characterization of a Rhodium(I) sigma-Methane Complex in Solution,” by Wesley H. Bernskoetter, Cynthia K. Schauer, Karen I.

Comprehensive Character Tables and Reducible Representation Tool

Submitted by Austin Scharf / Oxford College of Emory University on Wed, 01/11/2012 - 11:05
Description

This site is an excellent, well-organized collection of the chemically relevant character tables.  I find it particularly helpful because it includes the cubic functions, allowing you to determine the symmetry labels of the f orbitals in a given point group; these are not included in most of the collections of character tables in general inorganic chemistry textbooks.  Additionally, it has a tool that automatically reduces (correctly derived) reducible representations into their component irreducible representations.

Exploding the Myth of Intracellular free metal ion pools_ A reading guide

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 09/22/2011 - 15:18
Description

This is a Reading guide to the Review article Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors Lydia A. Finney, et al. Science 300, 931 (2003);

DOI: 10.1126/science.1085049.  

 

Bioinorganic Introduction: Periodic Table

Submitted by Sheila Smith / University of Michigan- Dearborn on Tue, 09/13/2011 - 16:05
Description

I use this introductory exercise at the beginning (the very first thing) of my one semester topics course in Bioinorganic Chemistry and as the first exercise in my Bioinorganic unit in my senior level Inorganic Course.  The exercise is a very simple one, but generates a lot of great discussion, requiring students to access knowledge from prior chemistry and biology courses, as well s common knowledge from sources external to their academic career.  Students are often surprised to see how much they know before a topic is covered.  

Hard-Soft Acid-Base Theory in Action: A New Ion-Exchange Material for Sequestering Heavy Metals

Submitted by Maggie Geselbracht / Reed College on Sun, 06/26/2011 - 00:30
Description

This paper from Chemistry: A European Journal by Manolis Manos and Mercouri Kanatzidis (link provided below in Web Resources) describes the ion-exchange chemistry of a layered sulfide (KMS-1) that exhibits an enhanced preference for soft metal cations (Cd2+, Pb2+, and Hg2+) replacing K+ in between the metal sulfide layers of KMS-1.  Not only does this paper provide a practical application of hard-soft acid-base theory (HSAB), but it provides an accessible introduction to the technical literature for undergraduates, par

Demonstration on tempering of iron

Submitted by Lee Park / Williams College on Sat, 06/25/2011 - 15:01
Description

This is a simple and quick demonstration of the process oftempering of a solid, and the dramatic

Student-Directed Explorations to teach about ligands

Submitted by Marion Cass / Carleton College on Sat, 06/25/2011 - 14:43
Description

Several years ago I began using a set of Ligand-of-the-Week exercises in my Inorganic course to encourage (force) students to go outside of our textbook and into the chemical reference materials and chemical literature to find examples of ligands that bind to metal ions. My motivation was to get my students to see the wonderful breadth of known metal-ligand complexes and to develop skills associated with analyzing and classifying ligands. My original paper is fairly complete and can be accessed via J. Chem. Educ. which is now available through the ACS website.