Glassware and Apparatus Videos

Submitted by Jason Cooke / Department of Chemistry, University of Alberta, Canada on Wed, 04/15/2009 - 18:07
Description

A series of videos has been produced to show students the best way to assemble glass jointware.  A variety of different examples are provided, with variations that demonstrate some of the more complicated assemblies that are often used in inorganic synthesis (e.g., how to protect the system with a drying tube or to purge an apparatus with an inert gas).  The intent of the videos is to provide visual learners with a better idea of what they must do in the laboratory, and thereby speed up the process of assembling glass jointware.

Videos include:

Inorganic Chemistry Spectroscopy Tutorial: Theoretical Principles and Applications

Submitted by Jason Cooke / Department of Chemistry, University of Alberta, Canada on Wed, 04/15/2009 - 16:02
Description

We have developed an online tutorial that demonstrates the fundamental principles and applications of the various types of spectroscopy that students will encounter in the inorganic chemistry laboratory, namely infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and UV-visible spectroscopy (UV-vis).  The tutorial has been designed as a stand-alone interactive resource that can either introduce the fundamental aspects of spectroscopy from first principles or serve as a supplement for students who prefer to learn visually in an individual setti

Symmetry Resources at Otterbein University

Submitted by Dean Johnston / Otterbein University on Sat, 03/28/2009 - 23:42
Description

The resources contained within this web site are designed to help students learn concepts of molecular symmetry and to help faculty teach concepts of molecular symmetry.

d-orbitals in a variety of ligand geometries

Submitted by Flick Coleman / Wellesley College on Fri, 03/13/2009 - 20:54
Description

I developed this Jmol page to help my students see the relationship(s) between the ligands and metal d-orbitals in a number of different geometries.  Since the images are all rotatable, students who have difficulty looking at flat images and drawing appropriate conclusions have that barrier reduced or eliminated.  I have now used the application twice - this past fall in the second semester of introductory chemistry and a few weeks ago when I began ligand field theory in my inorganic course.  In both classes I received favorable comments.  A number of students in the inorganic course, who h

How molecular orbitals change as atomic energy levels shift

Submitted by Flick Coleman / Wellesley College on Wed, 03/11/2009 - 18:11
Description

Over the years I have developed a number of interactive tools that I use in my classes. This is a tool that seems appropriate for VIPEr. Comments are always appreciated, and I am always interested in developing new tools if there is something you might find useful.

This tool allows you to look at how molecular orbitals change as the difference in electronegativities of the parent atomic orbitals increases.

 

Inorganic Challenges

Submitted by Patrick Holland / Yale University on Tue, 03/10/2009 - 15:39
Description

The Interactive Inorganic Challenge Forum is a resource for inorganic chemistry teachers who want to incorporate team learning questions (“Challenges”) into an upper level undergraduate inorganic course. Through this site, teachers can exchange their ideas with others who have used inorganic chemistry Challenges. As a result, students benefit from field-tested group questions.

Ligand Substitution Kinetics Worksheet

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Tue, 03/03/2009 - 12:23
Description

This worksheet gives students practice with deriving and analyzing the rate laws for two step mechanisms. It's a good review of steady-state kinetics, the assumptions one makes in deriving rate laws, and rate determining steps (and how these last affect the rate law). It finishes by connecting these ligand substitution kinetics to Michaelis-Menton kinetics to show that "it's all the same math, we just change the form". 

House: Inorganic Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Mon, 01/12/2009 - 15:35
Description

House (Inorganic chemistry):  The book is divided into 5 parts:  first, an introductory section on atomic structure, symmetry, and bonding; second, ionic bonding and solids; third, acids, bases and nonaqueous solvents; fourth, descriptive chemistry; and fifth, coordination chemistry.  The first three sections are short, 2-4 chapters each, while the descriptive section (five chapters) and coordination chemistry section (seven chapters covering ligand field theory, spectroscopy, synthesis and reaction chemistry, organometallics, and bioinorganic chemistry.) are longer.  Each chapter includes

Bonding and Electronic Structure of a 14-electron W(II) bound to 4-electron pi-donors

Submitted by Hilary Eppley / DePauw University on Sun, 01/11/2009 - 12:01
Description

This paper is a meaty communication that covers novel bonding of 4 e- π-donors to a 14-electron species. Requires students to apply their knowledge of electron counting and organometallic bonding to ligands that are acting in novel ways.  This also includes exercises dealing with chemical information and general questions that require students to put the science in context.