Databases for Kinetics

Submitted by Adam Johnson / Harvey Mudd College on Mon, 06/03/2013 - 15:02
Description

I recently came across some web resources for teaching kinetics. They are searchable compilations of kinetics data, principally gas-phase. Two of the sites include "recommended" data for use in simulations.

I describe the four sites here and the URLs are here and below.

http://jpldataeval.jpl.nasa.gov/
This is a critical tabulation of the latest kinetic and photochemical data for use by modelers in computer simulations of atmospheric chemistry

Soluble Methane Monooxgenase Spectroscopy

Submitted by Gerard Rowe / University of South Carolina Aiken on Fri, 07/20/2012 - 09:37
Description

Determining the reactive intermediates in metalloenzymes is a very involved task, and requires drawing from many different spectroscopies and physical methods.  The facile activation and oxidation of methane to produce methanol is one of the "holy grails" of inorganic chemistry.  Strategies exist within materials science and organometallic chemistry to activate methane, but using the enzyme methane monooxygenase, nature is able to carry out this difficult reaction at ambient temperatures and pressures (and in water, too!).

Solubility and the Need for Bioinorganic Metal Ion Transport and Storage

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 07/16/2012 - 09:42
Description

 

This is an in class exercise that I use to emphasize the need for metal ion transport and storage in biochemistry.  Applying the Van't Hoff equation to the Ksp value at 25°C for ferric hydroxide, students calculate the iron concentration at which ferric hydroxide would begin to precipitate out in the blood.  It' s an interesting problem that requires very little math beyond that used in gen chem, and the answer is in stark contrast to the amount of iron that we actually store in our bodies.  

The Eyring Equation

Submitted by Adam Johnson / Harvey Mudd College on Thu, 09/29/2011 - 01:46
Description

I was taught (many years ago) the common misconception that fitting the linearized form of the Eyring equation overstates the error in the intercept because on a 1/T axis, the intercept is at infinite temperature, and the intercept is far from the real data. While researching various methods of data fitting, I stumbled across this great article from the New Journal of Chemistry (New J.

Student Literature-Based Organometallic Lecture

Submitted by Jeffrey Rood / Elizabethtown College on Mon, 01/03/2011 - 14:42
Description
I taught an advanced inorganic chemistry course for the first time this past fall. I focused strictly on organometallic chemistry and we used Spessard and Miessler's book. Because this book is focused on transition metal organometallics, I wanted the students to appreciate some of the organometallic chemistry of the s- and p-block (and zinc). Students worked in pairs (the class size was 12) and had most of the semester to research the literature and develop a 40-50 minute lecture. I also had them develop homework questions and an in class activity to help engage the other students.

Literature Discussion: "Analysis of an Unprecedented Mechanism for the Catalytic Hydrosilylation of Carbonyl Compounds"

Submitted by Lori Watson / Earlham College on Sun, 03/09/2008 - 16:14
Description

This is a literature discussion assignment in which students read a paper, come up with their own answers to the provided questions (and submit them).  This is followed by a general in-class discussion on the paper.  This particular article deals with hydrosilyation of carbonyl compounds by a Re catalyst and describes the mechanism and kinetics in detail.  I found it a good paper to help students connect their P-chem (and inorganic) kinetics with a "real" system.  As part of the literature assignment, I also ask students to draw an MO diagram of a simple substrate (for review).

Bercaw vs Bergman

Submitted by Adam Johnson / Harvey Mudd College on Fri, 01/04/2008 - 13:26
Description

Relative metal-hydrogen, -oxygen, -nitrogen, and -carbon bond strengths for organoruthenium and organoplatinum compounds; equilibrium studies of Cp*(PMe3)2RuX and (DPPE)MePtX systems
Henry E. Bryndza, Lawrence K. Fong, Rocco A. Paciello, Wilson Tam, John E. Bercaw
J. Am. Chem. Soc.; 1987 ; 109(5); 1444-1456.