Introductory Chemistry

3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
12 Dec 2018

Foundations Inorganic Chemistry for New Faculty

Submitted by Chip Nataro, Lafayette College

What is a foundations inorganic course? Here is a great description

https://pubs.acs.org/doi/abs/10.1021/ed500624t

 

Prerequisites: 
Corequisites: 
Course Level: 
17 Nov 2018

Quantum Numbers and Nodes

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 
1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

 

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Description: 

This is a flipped classroom module that covers the concepts of quantum numbers, and radial and angular nodes. This activity is designed to be done at the beginning of the typical first quarter/first semester general chemistry course (for an atoms first approach; if instructors use a traditional course structure this unit is likely done towards the middle/end of the first quarter/semester). Students will be expected to have learned the following concepts prior to completing this activity:

a) quantization of energy in the atom and the Bohr model of the atom;

b) how the wave/particle duality of electrons was described by de Broglie;

c) how the wave/particle duality of electrons was used by Schrodinger to develop the quantum mechanical model of the atom;

d) how radial probability distribution was used to generate the idea of atomic orbitals, and orbital probability surfaces.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

 

 

Learning Goals: 

a) describe the meaning of the quantum numbers n, l, and ml;

b) determine the values of the quantum numbers n, l, and ml;

c) describe the meaning of radial and angular nodes;

d) determine the number of radial and angular nodes on different types of atomic orbitals;

e) begin to understand the correlation between the quantum numbers and the total number of atomic orbitals for a given atom, and how the periodic table can be used to build up the overall orbital structure for an atom.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Course Level: 
Corequisites: 
Prerequisites: 
Topics Covered: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes
26 Jul 2018

General Chemistry Collection for New Faculty

Submitted by Kari Stone, Benedictine University

VIPEr to the rescue!

The first year as a faculty member is extremely stressful and getting through each class day to day is a challenge. This collection was developed with new faculty teaching general chemistry in mind pulling together resources on the VIPEr site to refer back to as the semester drags along. There are some nice in-class activities, lab experiments, literature discussions, and problem sets for use in the general chemistry course. There are also some nice videos and graphics that could be used to spark interest in your students.

Subdiscipline: 
Prerequisites: 
Corequisites: 
Course Level: 
19 Jul 2018

Teaching Forum Posts for New Faculty

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

Not applicable.

Evaluation Results: 

Not applicable.

Description: 

This web resource is a diverse list of VIPEr forum topics about teaching that may be of interest to new faculty assigned to teach general chemistry for the first time. It was created as part of a larger collection to help new faculty get started in the classroom.

Prerequisites: 
Subdiscipline: 
Corequisites: 
Course Level: 
Learning Goals: 

There are no specific learning goals since this web resource is for faculty to become familiar with some of the topics that have been discussed in the teaching forum on VIPEr. 

Implementation Notes: 

Not applicable.

Time Required: 
If a faculty member reads through all the forum topics, this could take an hour.
17 Jul 2018

Stoichiometric Calculations: A General Chemistry Flipped Classroom Module

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 

1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. As  noted in the worksheet answer key, question #4 generally gives students the most trouble as they may not yet have learned how to sum a series of reactions to yield an overall reaction. Instructors are encoruaged to do an example of this in the acitivty introduction. 

Description: 

This is a flipped classroom activity intended for use in a first semester general chemistry course. Students are expected to have prior knowledge in determining the molar mass of compounds, how to carry out mole/gram conversions, and how to write balanced chemical reactions. The activity includes:

1) pre-lecture learning videos that guide students through carrying out basic stoichiometric calculations, determining the limiting reactant, and determining the percent yield of a reaction;

2) a pre-lecture interactive tutorial that helps students learn the concept of limiting reactant;

3) pre-lecture quiz questions; and

4) an in-class activity that requires students to apply their knowledge of stoichiometry and limiting reactant in the real-world application of converting coal to liquid fuel.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

Learning Goals: 

Students are expected to complete the following learning objectives:

a) using mole-gram conversions and mole-mole conversions to carry out stoichiometric calculations for balanced chemical reactions;

b) gaining appreciation for how stoichiometric calculations are used in real-world chemical reactions.

Prior to completing this activity, students will be expected to have learned how to use molar masses of elements and compounds to carry out mole-gram conversions, how to balance chemical reactions, and how to use balanced chemical reactions to carry out mole-mole conversions.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Corequisites: 
Subdiscipline: 
Topics Covered: 
Prerequisites: 
Course Level: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes
23 Jun 2018

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend, Calvin College
Evaluation Methods: 

Having not run this yet because it was collaboatively developed as part of a IONIC VIPEr workshop, we suggest grading questions 1-9 for correctness, either during or after class. Students should be tested later with additional questions based on reaction profiles. The final 3 questions should prepare students to constructively discuss the merits/limitations of computational methods. after discussion, students could be asked to submit a 1-minute paper on how well they can describe the benefits/limitations of compuational chemistry.

Evaluation Results: 

Once we use this, we will report back on the results.

Description: 

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq. 8 from the paper) relating activation energy, temperature and rate, the student can make some initial judgements about how well DFT calculations model various aspects of a reaction mechanism such as the structure of intermediates and transition states, and free energy changes.

Learning Goals: 
Upon completing this activity, students will be able to:
  1. Interpret reaction profile energy diagrams.

  2. Use experimental and computational data to calculate half lives from activation energies and vice versa.

  3. Assess the value and limitations of DFT calculations.

Prerequisites: 
Course Level: 
Corequisites: 
Implementation Notes: 

Having not run this with a class, we can only suggest that this activity be run in a single class period.

We presume that students have been exposed to the basic idea of reaction profiles.

Teacher should hand out the paper ahead of time and reassure students that they are not going to be expected to understand many of the details of this dense computational research paper. Instead, students should read just the synopsis included on the handout.Teacher should then spend 5 - 10 minutes summarizing key aspects of paper: 1) it's about a nitric oxide reductase mimic that catalyzes the reaction 2NO → N2O + O; 2) NO is important signaling molecule; 3) DFT is a computational method to model almost any chemical molecule, including hypothetical intermediates and transition states.

Students should work through questions in groups of 2 - 4. The final question (12) is somewhat openended and the teacher should be prepared to lead a wrap up discussion on the benefits and limitations of computational chemistry.

Time Required: 
50 minutes
22 Jun 2018
Evaluation Methods: 

An answer key is included for faculty.

Evaluation Results: 

This LO was developed for the summer 2018 VIPEr workshop, and has not yet been implemented.  Results will be updated after implementation.

Description: 

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Write a balanced half reaction for the conversion of NO to N2O and analyze a reaction in terms of bonds broken and bonds formed.

  2. Evaluate the structures of metal complexes to identify coordination number, geometry (reasonable suggestion), ligand denticity, and d-electron count in free FeII/FeIII centers.

  3. Recognize spin multiplicity of metal centers and ligand fragments in a complex.

  4. Interpret a reaction pathway and compare the energy requirements for each step in the reaction.

  5. Draw multiple possible Lewis Structures and use formal charges to determine the best structure.

  6. Draw molecular orbital diagrams for diatomic molecules.

  7. Identify the differences in bonding theories (Lewis vs MO), and be able to discuss the strengths and weaknesses of each.

  8. Interpret calculated MO images as σ or π bonds.

  9. Identify bond covalency by interpreting molecular orbital diagrams and data.

  10. Define key technical terms used in an article.

  11. Analyze the structure of a well written abstract.

  12. Identify the overall research goal(s) of the paper.

  13. Discuss the purposes of the different sections of a scientific paper.

Implementation Notes: 

The paper in which this discussion is centered around is very rich in concepts, and will take time for students to digest.  As the technical level is higher than most foundation level course, it is strongly recommended that students focus on the structure of the paper, and not the read the entire paper.  The discussion is modular with focuses on both MO theory drawn form the paper, as well as a general anatomy of how literature papers are organized and what constitutes a good abstract.  Either focus could take a single 50 minute lecture, with two being necessary to complete both aspects.  Instructors can choose either focus, or both depending on their course learning goals.

This was developed during the 2018 VIPEr workshop and has not yet been implemented.  The above instructions are a guide and any feedback is welcome and appreciated!

Time Required: 
One or two 50 minute lectures depending on instructor's desired focus
19 Dec 2017

Visual scaffold for stoichiometry

Submitted by Margaret Scheuermann, Western Washington University
Description: 

These five slides are intended to share a visual scaffolding that I developed to help my general chemistry students identify what calculations are needed to solve stoichiometry problems.

 

The visual scaffold involves writing the balanced equation and then under it drawing a table with two rows and enough columns so that there is one column under each reagent in the equation. The top row is labeled as "moles" and the bottom row is labeled as "measurable quantity". Students then write in any information about a specific reagent or product that was given and identify the quantity that the question is asking them to find. They then add a series of arrows to the table to generate a "map" of how to get from the information they are given to the information they need to find with each arrow representating a type of calculation that they have already seen and practiced. Vertical arrows represent a calculation between a measured quantity and a number of moles. Horizontal arrows in the top row represent calculations between moles of one substance and moles of another substance. Horziontal arrows in the "measured quantity" row are not allowed since those unit conversion factors are not readily available. 

 

Corequisites: 
Topics Covered: 
Prerequisites: 
Course Level: 
Learning Goals: 

A student should be able to determine the quantity of a reagent required or the quantity of a product produced in a reaction.

Subdiscipline: 
Related activities: 
Implementation Notes: 

The scaffolding begins with a review of the two types of calculations that are required for basic stoichiometry: converting between grams and moles, and converting between moles of one substance and moles of another substance using the coefficients of a balanced equation as unit conversion factors (slide 1).

Some ABCD card/clicker questions can be added here if students have not practiced these types of problems in class recently.

After introducing the visual scaffold (slide 2) I do an example problem or two on the board/overhead/doc cam (slide 3).

This is a good point to give students an opportunity to work on a practice problem or if the introduction to stoichiometry began part way through a class period, an exit question.

Next I introduce situations where it could take more than one calculation to get from the measured quantity to moles (slide 4). 

An example problem and/or practice problem and/or exit question can be added here.

The visual scaffold is also relevant for limiting reagent problems. I've included an example (slide 5/6) but limiting reagent is usually presented in a subsequent class period after some examples of the limiting reagent concept using sandwiches or something similar. 

Time Required: 
30-50 minutes. varies with the number of examples and practice problems
Evaluation
Evaluation Methods: 

I will usually do an exit question- a stoichiometry problem from the textbook- after either slide 3 or slide 4. I do not require students to use the visual scaffold if they are already comfortable with stoichiometry from a previous class but many choose to use it. Some students will include the tables from the visual scaffold as part of the work they show on exams, again without being prompted or required to do so. 

31 Jul 2017

Inorganic Nomenclature: Naming Coordination Compounds

Submitted by Gary L. Guillet, Armstrong State University
Evaluation Methods: 

For my course I grade this assignment as a problem set.  Upon collecting the assignment I do not exhaustively grade them.  I check them over for completness.  I tell the students when I hand it out that it is designed for them to learn and then test their own comprehension and if they are stuck they should bring issues to office hours. 

On the following exam I put two or three inorganic complex names and have the students draw the structures.  The test questions always incorporate isomerism in addition to combinations of common ligands and transition metals.

Evaluation Results: 

After completion of this assignment most students are able to draw straigthforward structures including some isomers on an exam.  They can identify common ligands from their names like water, ammonia, carbon monoxide.  They also understand the common conventions in naming including handling cis and trans isomers as well as fac and mer isomers.

In the most recent sample of ACS examinations (IN16D) 87% of my students answerd correctly on the question most directly related to this assignment, selecting the correct name of a given complex using a picture of the complex.  I do not have any comparative data from another teaching approach.

Description: 

I do not like to take a large amount of time in class to cover nomenclature of any kind though I want students to know the names of common ligands and the basic ideas of how coordination complexes are named.  Since it is a systematic topic I assign this guided inquiry worksheet.   The students complete it outside of class and can work at whatever pace they want.  If they are more familiar with the topics the can quickly complete it but if they are rusty or have not seen some of the material it gives them an easy entry point to ask questions to fill in any gaps in their knowledge.  This assignment covers determing charge on a metal in a complex with simple ligands, how to identify and name common isomers, and it is structured in a guided inquiry form. 

Learning Goals: 

Students will be able to identify and correctly name common ligands in a chemical structure or chemical name.

Students will be able to identify the charge on a metal or a ligand in a chemical structure.

Students will be able to identify common isomeric differences in a chemical structure or a chemical formula (cis, trans, fac, mer). 

Students will be able to use a chemical name to draw a chemical structure.

Equipment needs: 

None

Topics Covered: 
Corequisites: 
Prerequisites: 
Implementation Notes: 

I use this assignment to replace a lengthy lecture on the topic of nomenclature when covering coordination chemistry.  I have students complete this assignment outside of class.  I encourage them to work in pairs so students can jointly interpret the instructions and determine the patterns in naming complexes.  The assignment is constructed in a very straightforward manner and covers the basics of inorganic nomenclature.

Upon completion of the assignment I take about 15-20 minutes in class to quickly cover the main ideas of the assignment.  I field any questions that arose during the assignment and I do a few comprehension check type questions on the board. 

Time Required: 
1-2 hours

Pages

Subscribe to RSS - Introductory Chemistry