Collaborative Point Group "Escape Room" Competition

Submitted by Joya Cooley / California State University, Fullerton on Tue, 08/08/2023 - 19:29
Description

This is a digital "escape room" where students determine point groups of molecules and answer follow-up questions to determine four digits. The four digits can be used to unlock a physical lockbox which is brought to class with small prizes inside.

Stable Borepinium and Borafluorenium Heterocycles: A Reversible Thermochromic “Switch” Based on Boron–Oxygen Interactions by Robert J. Gilliard Jr.

Submitted by Niharika K Botcha / Carnegie Mellon University on Fri, 06/30/2023 - 10:27
Description

This literature discussion on the Hot Paper communication in Chemistry, A European Journal; highlights the first examples of borepinium and borfluorenium cations whose optical properties can be tuned and also the very first reported example of thermochromism in these cationic species. R. J. Gilliard, Chem. Eur. J. 2019, 25, 12512. https://doi.org/10.1002/chem.201903348

2023 Content Building Workshop - Morgan State University

Submitted by Chip Nataro / Lafayette College on Tue, 06/27/2023 - 10:56

This is a list of all of the learning objects developed in association with the 2023 content building workshop. Prof. Robert Gilliard was the featured speaker for this workshop, so most of the LOs will focus on his work.

Examination and Classification of Molecular Symmetry

Submitted by Ben Lovaasen / Wheaton College (IL) on Thu, 06/22/2023 - 11:19
Description

This is a hands-on introduction to molecular symmetry and point groups. Students are not expected to have any exposure to molecular symmetry before this lab. Students work in pairs to identify symmetry elements in molecules and assign molecules to appropriate point groups.

Balloon Built Molecular Orbitals

Submitted by Darren Achey / Kutztown University on Wed, 06/21/2023 - 11:58
Description

In this activity, students will collectively build molecular orbitals for homonuclear diatomic molecules using balloons as models for atomic orbitals. This activity gets students up and moving and involved in the building of an MO diagram and allows for 3-D visualization of the core concepts of building molecular orbitals from atomic orbitals.

Under pressure: Structure and bonding in actinide complexes (Arnold)

Submitted by Amy Price / UC Berkeley and Lawrence Berkeley National Laboratory on Fri, 05/26/2023 - 15:24
Description


This literature discussion focuses on a 2022 Nature Comm paper looking at the reasons behind the pyramidal structures of tri-coordinate f-element complexes. There is plenty to discuss in terms of bonding and coordination geometries in metal complexes, and the effects of pressure on coordination geometry.

Building Heteronuclear Diatomic MOs

Submitted by Andrea Van Duzor / Chicago State University on Thu, 01/26/2023 - 14:53
Description

A guided inquiry activity for students to build the MO diagram for HF based on energetic and symmetry considerations.  Students then compare their model to a standard MO diagram and examine what additional information a MO diagram conveys that the Lewis structure does not.

Phosphate Reduction by Mechanochemistry (Cummins)

Submitted by Kyle Grice / DePaul University on Fri, 01/13/2023 - 11:15
Description

This Literature Discussion LO was created for the ACS Inorganic Chemistry Award Winners. Dr. Kit Cummins was the recipient of the 2023 Frederick Hawthorne Award in Main Group Inorganic Chemistry. This LO is based on a recent paper from the group of Dr. Cummins, entitled "Sustainable Production of Reduced Phosphorus Compounds: Mechanochemical Hydride Phosphorylation Using Condensed Phosphates as a Route to Phosphite", published in ACS Central Science20228, 332-339.