Having fun with your own molecular models

Submitted by Arpita Saha / Georgia Southern University on Wed, 07/16/2014 - 15:04
Description

This is a fun chemistry project where students make model compounds to learn various structural aspects of the compound. This is an individual project that is each student is assigned with one compound.  They can use any item (for e.g. Styrofoam balls etc) to make their very own model compound. The model should contain all the atoms (visually distinctive), bonds, lone pairs. Student is expected to create something novel rather using molecular model kit. They can use text book and lecture material for the resources.

A Review of 3DMolSym: A Web Resource for Teaching Molecular Symmetry

Submitted by Marion Cass / Carleton College on Fri, 05/23/2014 - 19:22
Description

Introducing you to 3DMolSym:  A Web Resource for Teaching Molecular Symmetry that uses Adobe Shockwave for Visualizations and Animations.

Note there is a slight difference when operating this resource on a Mac or in a Windows Operating Systerm.  On a Mac if you don't change an item (any item) in the pull down menu on the right when the resouce opens, the selection of molecules will be frame shifted by one molecule.  An easy fix is described in the Description below.

Molecular Orbitals of Square-Planar Tetrahydrides

Submitted by Matt Whited / Carleton College on Fri, 04/18/2014 - 10:15
Description

This in-class activity walks students through the preparation of a molecular-orbital diagram for methane in a square-planar environment.  The students generate ligand-group orbitals (LGOs) for the set of 4 H(1s) orbitals and then interact these with carbon, ultimately finding that such a geometry is strongly disfavored because it does not maximize H/C bonding and leaves a lone pair on C.

'Sophomore' symmetry: Lecture materials

Submitted by Chip Nataro / Lafayette College on Thu, 03/27/2014 - 10:19
Description

Having been inspired by a number of wonderful LOs, I introduced group theory in my 'sophomore' inorganic class this spring. In addition to learning to determine the point group of a molecule, students were taught how to construct a qualitative MO diagram though the use of LGOs. While a little more than 5 slides, this is what I used in lecture to cover the material.

 

'Sophomore' symmetry: Computational analysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/25/2014 - 17:34
Description

Having been inspired by a number of wonderful LOs, I introduced group theory in my 'sophomore' inorganic class this spring. In addition to learning to determine the point group of a molecule, students were taught how to construct a qualitative MO diagram though the use of LGOs. While this course can be taken with or without the laboratory component, it seemed only natural to include a lab on this material. A previous lab had introduced the students to computational methods for geometry optimization.

Symmetry Lectures

Submitted by Sabrina Sobel / Hofstra University on Sat, 03/08/2014 - 16:00
Description

Two excellent video presentations on symmetry. The Ted Talk by Marcus du Sautoy is an excellent introduction to the concept of symmetry and systematically describing it. In "Impossible Crystals" Nobel Laureate and physicist Paul Steinhardt discusses the creation of "Impossible crystals": quasi-crystals with five-fold symmetry previously believed impossible.

Orbital Overlap Worksheet

Submitted by Vanessa / Albion College on Tue, 03/04/2014 - 22:43
Description

This exercise was developed to help students predict bonding between s,p and d atomic orbitals.

Understanding Hypervalency Activity

Submitted by Gerard Rowe / University of South Carolina Aiken on Mon, 11/04/2013 - 10:38
Description

This activity is meant to teach students an MO theory interpretation of hypervalency that goes beyond the simple (and somewhat unsatisfying) explanation that atoms that are in the third row and below use d-orbitals for bonding in addition to s- and p-orbitals. Specifically, students will be learning how to construct MO diagrams for multicenter bonding schemes (i.e., 3c4e).  

QSAR and Inorganic Chemistry

Submitted by Vanessa / Albion College on Thu, 06/27/2013 - 14:59
Description

This presentation provides a short introduction to Quantitative Structure-Activity Relationships and its use in Inorganic Chemistry. A brief introduction to Linear-Free Energy Relationships and the Hammett Equation is given, followed by three examples of how QSARs have been used in inorganic chemistry.