In Exercise 1, the vibrational spectrum of formaldehyde is calcuated by three different methods. Because the vibrational modes come out in a different order, energy-wise, in one of the methods, students have trouble keeping track of which vibration is which. Each mode is labeled with the correct symmetry label, which should help them. Plus, they can click on each mode and visualize it.

Exercise 2 involves calcuating delta H for an "isodesmic" reaction: one in which the total number and type of bonds is the same in reactants and products. This helps cancel any systematic errors in the calculations. If this is one of the first time that students have worked in "hartrees," it is helpful to explain that unit to them. Students compare semi-empirical calculations with HF and DFT, and in this example, the HF and DFT calculations give much more accurate results.

Exercise 3 is about calculating UV-Vis spectra, but more importantly it walks students through drawing more complicated molecules. The CIS/ZINDO approach is used for the UV-Vis calcuation, which may not be highly accurate, but is very fast, so students get rapid results that they can compare.

In Exercise 4, students calculate NMR spectra for three different molecules. It teaches students about chemical shifts, but it does not cover coupling constants. If students are experienced with NMR, the averaging of proton resonances (such as the three protons in a methyl group) has become second nature to them. This exercise forces them to think about how those resonances are averaged.