Communication skills

18 Jul 2019

Science Information Literacy Badge--Reading the Literature

Submitted by Michelle Personick, Wesleyan University
Evaluation Methods: 

I use this activity as a "badge," which is self-paced guided skill-building activity that students complete on their own time outside of class. Badges are designed around fundamental chemistry skills that students wouldn’t necessarily acquire from standard course content and lectures. They carry a very small point value (about 2% of the course total per badge) but my students are very motivated by even small amounts of points. I assign points primarily based on completion and effort and also provide brief written feedback for each student. I have my students turn in badges in Moodle, which makes feedback more streamlined.

Description: 

This is an activity designed to introduce general chemistry students to reading the chemistry literature by familiarizing them with the structure of a published article. The activity first presents an article from the Whitesides group at Harvard about writing a scientific manuscript, along with a video about the peer-review process. There are two parts to the questions in the activity, which are based on a specific article from Nature Communications (doi.org/10.1038/s41467-019-08824-8). Part I is focused on the structure of the article and where to find key pieces of information. Part II encourages students to use general audience summaries in combination with the original article to best understand the science while making sure they get a complete and accurate picture of the reported work.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

A student should be able to approach the chemistry literature and determine where to find:

  • the authors and their affiliations;
  • the main objective of the research;
  • the main outcomes of the research;
  • why the research is important;
  • experimental details;
  • supplementary figures and other information. 

A student should be able to broadly evaluate the reliability of secondary summaries of scientific articles by comparing them against the key points of the original paper.

Implementation Notes: 

This activity is based on a specific article: "Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces" (Nat. Commun., 2019, 10, 865. doi.org/10.1038/s41467-019-08824-8). However, it's easily adapted to other articles that are more suited to a particular course, and I've used other articles in previous iterations. This article was chosen because the content is at least partly accessible to students in my second semester general chemistry course, who have already had some electrochemistry/redox chemistry, and who have recently learned about kinetics, reaction mechanisms, and catalysis. The topic of liquid metals is new and interesting to the students, because it's not something the'd normally be exposed to, and the application to CO2 sequestration is something they can connect with. 

 

9 Jun 2019

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam R. Johnson, Harvey Mudd College
Evaluation Methods: 

When I do this correctly, the students don't accidentally see something which may make immature students giggle.

Evaluation Results: 

I have had multiple colleagues tell me that this technique worked for them and saved them from repeating an embarassing classroom event.

Description: 
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.
Learning Goals: 

The instructor will draw the bonding MO of dihydrogen without accidentally causing laughter in the class or self embarassment.

Corequisites: 
Equipment needs: 

chalkboard or whiteboard

ability to adjust quickly just in case

Prerequisites: 
Implementation Notes: 

I have come close to accidentally drawing the incorrect version of this diagram and I am able to stop myself quickly as illustrated in the instructions. 

Time Required: 
a minute to learn, a lifetime to master.
9 Jun 2019

Chem 165 2018

Submitted by Adam R. Johnson, Harvey Mudd College

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

Subdiscipline: 
Corequisites: 
Course Level: 
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

7 Jun 2019

Guideline for drawing chemical structures

Submitted by Bradley Wile, Ohio Northern University
Description: 

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I give this to all of my research students as part of the welcome to the group package.

Pages

Subscribe to RSS - Communication skills