s-p Mixing and the Order of MOs in Diatomic Molecules
These slides provide an introduction to s-p mixing in diatomic molecular orbital diagrams appropriate for students in a general chemistry course.
These slides provide an introduction to s-p mixing in diatomic molecular orbital diagrams appropriate for students in a general chemistry course.
I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them). Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester. We then randomly assign the activities and students work in groups to complete them and provide feedback.
The benefits are twofold:
This was a short LO developed to give the students some context for ionic liquids in use. Since this paper is from a chemical engineering perspective, it supported a goal of having the students think about chemistry outside of the typical inorganic journal/research boundaries. This LO was implemented after a discussion of HSAB/ECW, frustrated Lewis pairs, non-aqueous media, and superacids. No explicit discussion of catalysis prior to this class discussion.
Short prompts for a mini review about recent applications in FLP chemistry. Trends in Chemistry also includes highlights and outstanding questions in the sidebar, which makes this an approachable review for students.
ChemCrafter, from the Science History Institute (formerly the Chemical Heritage Foundation), is a free iPad app that mimics a classic chemistry set. It is set up as a game, with three sections: reactions with water, reactions with acid, and salts. The app shows the progress of the reaction (smoke, color change, etc.) when two elements are mixed in a reaction vessel, and also gives the change in enthalpy of the reaction.
Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory
The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements
Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods
Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.
This experiment tasks students with preparing triphenylphosphine sulfide, and the corresponding I2 adduct, then characterizing these products using common instrumental methods. Students are asked to consider MOs and tie this to their Lewis bonding depiction for the final product. This discussion is supported by WebMO calculations and tied to the experimental data obtained by the student.
Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.
Fundamental topics in inorganic chemistry will be explored, among them: atomic theory and periodicity of the elements, bonding and properties of solid state materials, main group chemistry, structure and bonding of coordination compounds, and bio-inorganic systems. The laboratory component of the course will give students experience with a various laboratory techniques used in the synthesis and characterization of inorganic compounds.
Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.