Guideline for drawing chemical structures

Submitted by Brad Wile / Ohio Northern University on Fri, 06/07/2019 - 17:14
Description

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.

Inorganic Chemistry

Submitted by Leon / Stonehill College on Mon, 06/03/2019 - 11:32
Description

This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives.  Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.

Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48
Description

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Helping Students with Visual Impairments See Colors

Submitted by Doug Balmer / Warwick High School on Fri, 05/31/2019 - 12:05
Description

I have had some students in class have a hard time identifying colors (flame tests, solution color, acid-base indicators, etc.) because of a visual impairment. There are many cell-phone apps that are helpful in aiding these students. "Pixel Picker" allows the students to load a picture from a device (cell phone, ipad). This is helpful because students are now dealing with a "frozen" image. Moving the cross-hair to different parts of the picture changes the R-G-B values. The "Color Blind Pal" app uses a more qualitative approach.

Teaching Computational Chemistry

Submitted by Joanne Stewart / Hope College on Thu, 05/23/2019 - 14:10

This is a series of in-class exercises used to teach computational chemistry. The exercises have been updated and adapted, with permission, from the Shodor CCCE exercises (http://www.computationalscience.org/ccce). The directions provided in the student handouts use the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

CompChem 06: Electron Densities, Electrostatic Potentials, and Reactivity Indices

Submitted by Joanne Stewart / Hope College on Wed, 05/22/2019 - 09:38
Description

This is the sixth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

CompChem 04: Single Point Energies and Geometry Optimizations

Submitted by Joanne Stewart / Hope College on Tue, 05/21/2019 - 10:19
Description

This is the fourth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).