Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

Interactive Syllabus

Submitted by Amanda Reig / Ursinus College on Mon, 08/27/2018 - 22:58
Description

The Interactive Syllabus is a web-based survey delivery of syllabus content to your students prior to the first day of classes.  The web link below explains many of the features and advantages, but in my opinion some of the best benefits are (1) students actually engage with the content on the syllabus in meaningful ways, (2) it saves class time on the first day, and (3) can encourage students to share questions/concerns they may not have been as eager to share in person.

The survey is built on the qualtrics platform, but could be adapted for other programs.  

Counting Orbitals: There are rules, it is symmetric, it is beautiful and easy

Submitted by Joe Lomax / U.S. Naval Academy on Tue, 08/07/2018 - 08:43
Description

Rules for quantum numbers are confusing but not arbitrary.  They are based on wave mathmatics, and once laid out properly are symmetric and beautiful.  Within four animation-clicks of the first slide of this PowerPoint Presentation, this beauty will unfold.  I do not exaggerate to say, faculty members will be agape and students will say, "Why didn't you show us this before."  No other presentation shows in as elegant a way the relationship between 1)  n, l and ml, 2) the ordering of orbitals in hydrogen-like atoms, and 3) the ordering of orbitals in the periodic table (along with

General Chemistry Collection for New Faculty

Submitted by Kari Stone / Lewis University on Thu, 07/26/2018 - 14:42

VIPEr to the rescue!

The first year as a faculty member is extremely stressful and getting through each class day to day is a challenge. This collection was developed with new faculty teaching general chemistry in mind pulling together resources on the VIPEr site to refer back to as the semester drags along. There are some nice in-class activities, lab experiments, literature discussions, and problem sets for use in the general chemistry course. There are also some nice videos and graphics that could be used to spark interest in your students.

Descriptive Inorganic Chemistry

Submitted by RTMacaluso / University of Texas Arlington on Tue, 07/24/2018 - 14:26
Description

An overview of descriptive main group chemistry, solid state structures and the energetics of ionic, metallic, and covalent solids, acid-base chemistry and the coordination chemistry of the transition metals. The course is intended to explore and describe the role of inorganic chemistry in other natural sciences with an emphasis on the biological and geological sciences. Important compounds and reactions in industrial chemistry are also covered. Intended for both chemistry and non-chemistry majors.

Teaching Forum Posts for New Faculty

Submitted by Shirley Lin / United States Naval Academy on Thu, 07/19/2018 - 11:32
Description

This web resource is a diverse list of VIPEr forum topics about teaching that may be of interest to new faculty assigned to teach general chemistry for the first time. It was created as part of a larger collection to help new faculty get started in the classroom.

Getting to Know the MetalPDB

Submitted by Anthony L. Fernandez / Merrimack College on Fri, 07/06/2018 - 11:29
Description

When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures.

Orbital Overlap and Interactions

Submitted by Jocelyn Lanorio / Illinois College on Mon, 06/25/2018 - 16:28
Description

This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions. 

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Advanced Level

Submitted by Cassie Lilly / NCSU on Sat, 06/23/2018 - 11:20
Description

The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.  The discussion questions are designed for an advanced level inorganic course. 

 

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend / Calvin College on Sat, 06/23/2018 - 10:56
Description

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.