Inorganic Chemistry I
Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.
VIPEr Fellows 2019 Workshop Favorites
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Inorganic Chemistry
Introduction to foundational concepts in inorganic chemistry with emphasis on atomic structure, bonding, and reactivity. Topics will include nuclear chemistry, quantum mechanics, periodic trends, covalent bonding, ionic bonding, metallic bonding, coordinate covalent bonding, acid-base chemistry, electrochemistry, and thermodynamics.
Advanced Inorganic Chemistry
This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry. Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)
Inorganic Chemistry
Structure and bonding in inorganic systems are the general subjects of this course. Both main group and transition metal chemistry are discussed.
Advanced Inorganic Chemistry
Inorganic Chemistry
This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives. Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.
Advanced Inorganic Chemistry
This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry. After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced. A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory. The students will use symmetry and group theory approaches to understand central atom hybridization, ligand
Hyperphysics
The hyperphysics website uses concept maps as a way to organize physics content knowledge: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html (condensed matter). I cam across this website while doing a review of the literature on what students know about semiconductors. There are nice explanations of many of the topics associated with semiconductors and they are organized in an unique way.
Pagination
- Previous page
- Page 2
- Next page