Inorganic Chemistry

Submitted by Dani Arias-Rotondo / Kalamazoo College on Thu, 08/05/2021 - 10:17

Inorganic Chemistry

Submitted by Joanne Aguila / University of the Philippines Los Banos on Tue, 08/03/2021 - 10:01

Inorganic Chemistry 2020

Submitted by Adam Johnson / Harvey Mudd College on Tue, 01/21/2020 - 17:35
Description

Inorganic chemistry interfaces and overlaps with the other areas of chemistry. Inorganic chemists  synthesize molecules of academic and commercial interest, measure properties such as magnetism and unpaired electron spin with sophisticated instruments, study metal ion uptake in living cells, and prepare new materials like photovoltaics. Inorganic chemistry is a diverse field, and we will only be able to touch on some of the chemistry of the 118 elements that currently reside in the periodic table.

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Inorganic Chemistry II

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 14:03
Description

This course uses molecular orbital theory to explain the electronic structure and reactivity of inorganic complexes. Topics include symmetry and its applications to bonding and spectroscopy, electronic spectroscopy of transition-metal complexes, mechanisms of substitution and redox processes, organometallic and multinuclear NMR.

 

Additional notes

I do not require a formal text but George Stanley's organometallic chemistry 'book' on VIPEr is made available to students (the link is found below).

Reactivity and Bonding of Complexes with Metal-Metal Bonds

Submitted by Chantal Stieber / Cal Poly Pomona on Wed, 03/01/2017 - 19:04
Description

This problem set was designed to be an in-class activity for students to practice applying their knowledge of metal-metal bonding (as discussed in the previous lecture) to recently published complexes in the literature. In this activity, complexes from four papers by Christine M. Thomas and coworkers are examined to give students practice in electron counting (CBC method), drawing molecular orbitals, and fundamental organometallic reactions.

Isotope Effects in Arene C-H Bond Activation by Cp*Rh(PMe3)

Submitted by Adam Johnson / Harvey Mudd College on Wed, 12/28/2016 - 13:20
Description

This literature discussion is based on a paper by Bill Jones and Frank Feher (J. Am. Chem. Soc., 1986, 108, 4814-4819). In this paper, they study the activation of aromatic C-H bonds by a rhodium complex. Through careful experimental design, they were able to examine isotope effects on the selectivity of the reaction. Analysis of the rate data allowed them to prepare a reaction coordinate free energy diagram. This paper also introduces the effects of C-H bond breaking in early or late transition states on the vibrational energy spacing at both ground and excited states.

Energetics and mechanisms of reductive elimination from Pt(IV)

Submitted by Adam Johnson / Harvey Mudd College on Tue, 12/27/2016 - 18:29
Description

This literature discussion is based on a paper by Karen Goldberg (J. Am. Chem. Soc., 1995, 117, 6889-6896). In this early paper by Goldberg, she studied the reductive elimination of ethane and methyl iodide from dppePtMe3I. The paper is well written, and approachable for undergraduates. It shows a real, interesting application of thermodynamic and kinetic methods to the study of a problem in mechanistic chemistry.

Student Oral Presentations of a Communication from the Primary Literature

Submitted by Carmen Works / Sonoma State University on Mon, 06/27/2016 - 16:43
Description

In the humanities it is common practice to read a piece of literature and discuss it.  This is also practiced in science and is the purpose of this exercise.  Each student is assigned a communication from the current  literature (inorganic, JACS, organometallics, J. Phys.