Green Chemistry and Redox Flow Batteries

Submitted by Abby O'Connor / The College of New Jersey on Thu, 01/07/2021 - 10:56
Description

This paper in Chemical Science written by Ellen Matson and co-workers describes a structure function approach to improving the properties of non-aqueous redox flow batteries based upon polyoxovanadate-alkoxides (POV-alkoxides). Given the importance of battery technology on society and sustainable chemistry, this article allows students to engage with a paper that could have broad implications in society.

SLiThErs - Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable

A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.

Chip Nataro / Lafayette College Thu, 12/17/2020 - 14:18

Demonstration of Hard-Soft Acid-Base Theory: An Ion-Exchanger for Recovery of Rare Earth Metals

Submitted by Gary L. Guillet / Georgia Southern University Armstrong Campus on Wed, 07/08/2020 - 08:19
Description

The article from The Journal of the American Chemical Society by M. Kanatzidis et al describes a new ion-exchange material (FJSM-SnS) that shows high selectivity for rare-earth metals (REE) and very fast adsorption kinetics.  A number of techniques are used to characterize the properties of the compound that students may not be very familiar with but the article presents in an accessible way.

Inorganic Active Learning Lesson Plan Design

Submitted by Meghan / Indiana University on Fri, 05/15/2020 - 09:05
Description

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

Solid State Structures tutorial

Submitted by Terrie Salupo-Bryant / Manchester University on Sat, 03/14/2020 - 12:19
Description

This tutorial will introduce students to some of the three-dimensional crystal structures exhibited by ionic and metallic solids.  They will examine the simple cubic, body-centered cubic, face-centered cubic, and the hexagonal closest-packed systems.  To facilitate visualization of the structures at the atomic level, they will use the Crystal Explorer website at Purdue University.

Advanced Inorganic Chemistry

Submitted by Weiwei Xie / Louisiana State University on Sun, 06/09/2019 - 12:11
Description

Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory

The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements

Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods

Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.

 

Inorganic Chemistry I

Submitted by Brad Wile / Ohio Northern University on Sun, 06/09/2019 - 08:55
Description
Bonding, structures, preparation, properties, compounds, and reactions
of main group and transition metal elements. Offered fall semester.

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Advanced Inorganic Chemistry

Submitted by Jeremy R. Andreatta / Worcester State University on Tue, 06/04/2019 - 23:07
Description

This course is a survey of the chemistry of the inorganic elements focusing on the relationship between electronic structure, physical properties, and reactivity across the periodic table. Topics to be covered include: atomic structure, chemical bonding, group theory, spectroscopy, crystal field theory, coordination chemistry, organometallic chemistry and catalysis, and bioinorganic chemistry.  Prerequisites: Successful completion of CH120, CH121, (with a C- or better) and CH 301 (suggested)