SLiThEr #5: Favorite Learning Objects (LO's)

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 15:23
Description

This is the fifth SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable), hosted by Drs. Kari Stone and Anthony Fernandez, in which they present and discuss some of their favorite Learning Objects from VIPEr and how they use them. 

SLiThEr #1: Creating online inorganic chemistry labs

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 14:29
Description

This is the link to the first SLiThEr (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable), presented by Kyle Grice and Hosted by Chip Nataro. The SLiThEr was recorded and posted on YouTube (see the web resources link). 

This particular roundtable focused on the teaching of a Junior/Senior-level inorganic chemistry laboratory completely online. Kyle presented on what he did in Spring 2020 when he had to pivot quickly to a fully remote modality with only a week or so of planning. 

Pencasts for Inorganic Chem: Finding Vibrations from Group Theory

Submitted by Kyle Grice / DePaul University on Mon, 12/14/2020 - 13:18
Description

These are two "Livescribe Pencasts" I have used for inorganic chemistry. I made them with an Echo 2 Livescribe pen for my 10-week Junior/Senior Inorganic chemistry course. We teach with MFT and I use these as supplemental materials outside of class (both for f2f and online versions of this class).

Synthesis of Fluorescent Aluminum Complexes

Submitted by Taylor Haynes / California Polytechnic, San Luis Obispo on Fri, 08/28/2020 - 15:34
Description

In this experiment, Students synthesize a Schiff Base and the corresponding aluminum complex to measure fluorescence. The lab provides exposure to air-free synthetic techniques, including the use of Schlenk Line techniques and safe handling of sure-seal bottles. Following data collection, students will be able to explain fluorescence spectroscopy and compare it to absorbance spectroscopy.

A cobalt hydroformylation catalyst tribute to Malcolm Green

Submitted by Chip Nataro / Lafayette College on Mon, 07/27/2020 - 20:00
Description

In this paper (Llewellyn, Green and Cowley, Dalton Trans. 2006, 4164-4168) the synthesis and characterization of two cobalt compounds with an N-heterocyclic carbene ligand (IMes) are reported. the first, [Co(CO)3(IMes)Me] was prepared by the reaction of [Co(CO)3(PPh3)Me] with IMes. The second compound, [Co(CO)3(IMes)COMe] is formed by the addition of Co to the first.

Evans' Method Calculator

Submitted by Brad Wile / Ohio Northern University on Fri, 06/26/2020 - 13:35
Description

A spreadsheet hosted on Pete Wolczanski's webpage for calculating (mu)effective

A copper "Click" catalyst for the synthesis of 1,2,3-triazoles

Submitted by Chip Nataro / Lafayette College on Wed, 06/10/2020 - 11:40
Description

This paper (Gayen, F.R.; Ali, A.A.; Bora, D.; Roy, S.; Saha, S.; Saikia, L.; Goswamee, R.L. and Saha, B. Dalton Trans2020, 49, 6578) describes the synthesis, characterization and catalytic activity of a copper complex with a ferrocene-containing Schiff base ligand. The article is relatively short but packed with information. However, many of the details that are assumed knowledge in the article make for wonderful questions some of which I hope I have captured.

Literature Discussion for Oscillating Stereocontrol: A Strategy for the Synthesis of Thermoplastic Elastomeric Polypropylene

Submitted by Shirley Lin / United States Naval Academy on Mon, 05/18/2020 - 15:25
Description

This literature discussion focuses upon the Science article by Coates and Waymouth reporting the synthesis of thermoplastic elastomeric polypropylene by an unbridged zirconocene. This article was the basis for the work done for my PhD thesis in the Waymouth group. The LO was written in May 2020 in honor of Bob Waymouth's 60th birthday. See the BITeS post announcing the LO here

Inorganic Active Learning Lesson Plan Design

Submitted by Meghan / Indiana University on Fri, 05/15/2020 - 09:05
Description

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold: