National ACS Award Winners 2022 LO Collection
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
This literature discussion on the Hot Paper communication in Chemistry, A European Journal; highlights the first examples of borepinium and borfluorenium cations whose optical properties can be tuned and also the very first reported example of thermochromism in these cationic species. R. J. Gilliard, Chem. Eur. J. 2019, 25, 12512. https://doi.org/10.1002/chem.201903348
The second in a series on teaching advanced topics to undergraduates, the SLiThEr focuses on organoMetallic chemistry. While the primary framework for the discussion is my senior level course, there is plenty of great content from the live participants.
This collection of learning objects was created to celebrate the National ACS Award Winners 2023 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
One thousand interactive organometallic and coordination complexes have been selected and prepared for practice and discovery in electron counting problems. The structures can be displayed and manipulated without requiring software installation using a web browser with JavaScript and JSmol.
This paper describes the use of a catalytic nickel system for the hydrodefluorination of aryl amides. While organofluorine compounds are extremely useful because of their unique properties, there are growing concerns about the impact of these compounds on the environment. Carbon-fluorine bonds are extremely strong, and so getting them to react is a significant challenge for chemists.
This paper describes work from the Milstein group in which ruthenium catalysts with pincer ligands are used to depolymerize nylons by breaking the C-N bond and hydrogenating the resulting products to amines and alcohols. Waste plastic is a serious environmental concern that needs a solution. Organometallic chemists put significant effort into finding ways to convert monomers into polymers, and now we must figure out ways to do the reverse.
This literature discussion was created to accompany the coordination chemistry chapter of a foundation-level inorganic course. It introduces the concept of cyclopentadienyl (Cp) ring slippage as a mechanism for ligand substitution.
This LO is a literature discussion based on one figure in Chan et. al.