X-ray Crystallography

Submitted by David J Harding / Walailak University on Thu, 12/15/2016 - 22:58

The website shared here includes excellent simulations concerning a wide variety of techniques commonly used in materials science and inorganic chemistry. I have found it particularly useful for X-ray crystallography as the simulations help understand the lectures. 

Close Packing Activity

Submitted by George Lisensky / Beloit College on Tue, 06/28/2016 - 11:47

Many extended structures can be viewed as close-packed layers of large anions, with the smaller cations fitting in between the anions. Larger holes between close-packed anions can hold cations with octahedral coordination. Smaller holes between close-packed anions can hold cations with tetrahedral coordination. The online jsmol resources show these layers and their holes.

Online Homework for a Foundations of Inorganic Chemistry Course

Submitted by Sabrina Sobel / Hofstra University on Mon, 06/27/2016 - 18:08

The Committee on Professional Training (CPT) has restructured accreditation of Chemistry-related degrees, removing the old model of one year each of General, Analytical, Organic, and Physical Chemistry plus other relevant advanced classes as designed by the individual department. The new model (2008) requires one semester each in the five Foundation areas: Analytical, Inorganic, Organic, Biochemistry and Physical Chemistry, leaving General Chemistry as an option, with the development of advanced classes up to the individual departments.

Solid State Stoichiometry Activity

Submitted by George Lisensky / Beloit College on Mon, 06/27/2016 - 17:11

The goal of this activity is to have students calculate the empirical formula of a compound given the contents of a unit cell. 

A repeating building block, or unit cell, is used to represent extended structures since shifting a unit cell along its edges by the length of the edge will exactly replicate the extended structure.

Solid State Stoichiometry Online

Submitted by George Lisensky / Beloit College on Mon, 06/27/2016 - 15:10

The page has JSmol structures for unic cells including cubic, body centered cubic, and face centered cubic unit cells as well as for CsCl, Ni3Al, Cu2O, NaCl, CaF2, ZnS, diamond, Li3Bi, NaTl, NiAl and ReO3The advanced page also has triclinic, monoclinic, hexagonal, orthorhombic, and tetragonal cells with all possible centering.

Visualizing solid state structures using CrystalMaker generated COLLADA files

Submitted by Barbara Reisner / James Madison University on Wed, 06/22/2016 - 16:59

Although I’m a solid state chemist, I still find it difficult to teach the visualization of solid state structures. I’m interested in any tool that helps my students visualize solids. My experience is that the more representations students can master, the more likely they are to find one that helps them understand solid state structures.

I’ve used many tools. These include

A model for every student: Visualizing solid state structures

Submitted by Barbara Reisner / James Madison University on Tue, 06/21/2016 - 13:11

We do not cover extended solids (solid state materials) in our general chemistry program. With the exception of students who have taken a course in materials science, Inorganic Chemistry I is the first time our students have encountered solid state structure. Although they have built some visualization skills by working with molecules and symmetry, they do not have robust 3D visualization abilities and have trouble using the language of solid state chemistry (unit cells, packing, filling holes, coordination number, etc…) in the context of structure.

Metal and Ionic Lattices Guided Inquiry Worksheet

Submitted by Adam Johnson / Harvey Mudd College on Mon, 05/16/2016 - 14:00

This is a short worksheet that guides students through simple metal lattices (SCP, CCP, HCP) and how filling holes in these lattices results in ionic lattices (NaCl, CsCl, fluorite, etc.).

The worksheet was used as an in-class activity after students had read about the material in the text. This activity is probably suitable for first-year students, though I used it with juniors/seniors.

Crystal Field Theory and Gems--Guided Inquiry

Submitted by Adam Johnson / Harvey Mudd College on Sat, 05/14/2016 - 21:42

The colors of transition metal compounds are highly variable. Aqueous solutions of nickel are green, of copper are blue, and of vanadium can range from yellow to blue to green to violet. What is the origin of these colors? A simple geometrical model known as crystal field theory can be used to differentiate the 5 d orbitals in energy. When an electron in a low-lying orbital interacts with visible light, the electron can be promoted to a higher-lying orbital with the absorption of a photon. Our brains perceive this as color.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.