Second year

21 Mar 2020

Ferrocene acylation - The Covid-19 Version

Submitted by Chip Nataro, Lafayette College
Description: 

This is the classic Chromatography of Ferrocene Derivatives experiment from "Synthesis and Technique in Inorganic Chemistry" 3rd Ed. (1986 pp 157-168) by R. J. Angelici. There are no significant changes from the experiment published in the book so details will not be provided. What is provided are links to some excellent videos showing the experiment and characterization data for students to work with. For the time being this will be a living document. Currently it has 1H, 13C{1H}, COSY, DEPT, HMBC, HSQC IR, UV-Vis, GC-MS and Cyclic Voltammetry raw data files for all compounds for students to work with. It also includes processed 1H, 13C{1H}, COSY, DEPT, HMBC, HSQC, IR, GC-MS and Cyclic Voltammetry data for all compounds. If anyone has any additional means of characterization they would like to include (say Mossbauer) please feel free to contact the author.

Corequisites: 
Learning Goals: 

A student should get an appreciation for what doing this lab would be like by watching videos. In addition, the student will analyze the data provided and learn about the characterization of ferrocene, acetylferrocene and 1,1'-diacetylferrocene.

Equipment needs: 

Nothing.

The NMR data comes from a Bruker instrument and can be opened with TopSpin, MestReNova and perhaps other programs.

Implementation Notes: 

Like most everyone at this time this is going to be a trial by fire.

19 Mar 2020

Job's Method - The Covid-19 Version

Submitted by Chip Nataro, Lafayette College
Evaluation Methods: 

Students are generally asked to write a full lab report including an abstract, brief introduction, experimental and results/discussion. I will likely not ask them to do that in this virtual lab. However, they will be asked to determine the value for n for the various [Ni(en)x] solutions as well as questions 1 and 2 from Angelici's book. In addition, I typically ask them to do some literature searching questions, but I am not sure if they will have access to SciFinder so I may have to bypass that or provide them the original papers I have them look at. Links to those papers are included.

Evaluation Results: 

I'll use this in a few weeks and see how it goes.

Description: 

This is the classic Job's Method experiment from "Synthesis and Technique in Inorganic Chemistry" 3rd Ed. (1986 pp 108-114) by R. J. Angelici. There are no significant changes from the experiment published in the book so details will not be provided. What is provided are a series of pictures and videos showing the experiment being performed. Also included are the raw files of the absorbance spectra in EXCEL. It is not perfect but given the situation many of us are facing at the time this is published, it is better than nothing. I was extremely rushed given that the governor essentially closed the state down the evening I did this, so please forgive any errors. This also includes literature searching questions.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

A student should get an appreciation for what doing this lab would be like by watching videos. In addition, the student will analyze the data provided and determine the species present in solutions containing various mole fractions of ethylenediamine and Ni(II).

Equipment needs: 

Nothing

Implementation Notes: 

Like most everyone at this time this is going to be a trial by fire.

12 Mar 2020

iPad Screen Recording

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

I do not assess their performance on creating the videos. The fact that they are able to submit the videos to me successfully is evidence that they have followed the instructions.

I have students peer-review videos created by other students. They are asked to provide feedback on the content and correctness of the video, as well as the quality of the presentation.

Evaluation Results: 

Students and faculty usually have little trouble following these instructions. The most common errors are listed below.

  • The video creator forgets to turn on the audio recording before beginning the screen recording process.
    • If this happens, the video must be re-recorded with the microphone on or the audio must be added using another program, such as iMovie.
  • The video cannot be edited to remove the "dead time" at the beginning and end of the video.
    • The iPad screen is very touchy and it can be hard to get the video selected and highlighted. It takes a bit of practice.
  • The video creator exports a video without sound.
    • This means that the iPad is running an older version of the iOS and the other set of instructions must be followed.
Description: 

Many faculty and students now have iPads and Apple Pencils for use in their classes. At Merrimack, we have a 1:1 iPad program (called Mobile Merrimack) in which all students and faculty are provided an iPad and students are also given an Apple Pencil and a keyboard. (Departments must purchase Apple Pencils for faculty members.) My department has leveraged this initiative in many ways and the iPad has been incorporated into the general chemistry and organic chemistry sequences, and into many of our upper-level courses.

The iPad is a really great tool for creating educational videos for classes, especially when paired with an Apple Pencil to facilitate writing on the screen in a very natural manner. It is very easy to create videos on your iPad using the Screen Recording Feature that is part of recent version of the iOS. When the Screen Recording is activated, anything shown on the iPad screen is captured to video and audio can be recorded using the built-in microphone or any connected microphone. My go-to iPad app for handwriting is Notability and I use the screen recording function to capture my writing and audio. Any app that you prefer can be used. (I have attached two videos as examples - one with audio and one without audio.)

My colleagues and I use the iPad to create videos that we distribute to our classes via our LMS (Blackboard or Google Classroom). I have also given my students the opportunity to demonstrate mastery of topics and concepts by creating narrated videos on their iPad and submitting them to me for credit (or for extra credit when revising exams). The linked instructions are those that I provide to my students and colleagues so that they can create videos on their own.

I have tried to keep these up to date with the changes in the operating system and I would appreciate any feedback that you have on these instructions. There are two versions of the instructions linked to this LO: one for current version (13) of the iOS and one for older versions of the iOS. I would also be happy to add any other information that you feel is necessary as you work through the recording process.

Please feel free to reach out to me if you need any help.

Topics Covered: 
Corequisites: 
Prerequisites: 
Learning Goals: 

After reading these instructions, a student or faculty member should be able to:

  • start the screen recording function on an iPad,
  • record a video that captures the iPad screen along with audio from a microphone,
  • save the video in their photo stream,
  • edit out the portions at the beginning and end of the video, and
  • export the video to a cloud service for sharing with others.
Implementation Notes: 

There are many ways to create videos on the iPad and some of those involve apps that cost money to purchase. This method for recording videos takes advantage of functionality built into iOS and will record anything shown on the iPad screen.

As mentioned in the description, I use this method to create videos for my students. I also provide these instructions to my students so that they can create videos that they can submit to me. 

Time Required: 
variable; depends on the length of the video
17 Jan 2020

Formal oxidation states in Ru-catalyzed water oxidation

Submitted by Margaret Scheuermann, Western Washington University
Evaluation Methods: 

I did not grade this activity.

Evaluation Results: 

Three students out of 14 explicitly mentioned that this activity was helpful on the free response section of the course evaluations.

Description: 

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Students practice assigning oxidation states to complexes with aquo, oxo, superoxo, and hydroperoxo ligands then use this information to analyze a proposed water oxidation mechanism from the literature.

Students are asked to add in the substrates and products entering and leaving the catalytic cycle. While this is, at its heart, a stoichiometry excercise, it helps calibrate students for the level of attention to detail needed to effectively engage with reading about multi-electron catalytic mechanisms.

Learning Goals: 

After completing this activity:

A student should be able to assign formal oxidation states to monometallic complexes with aquo, oxo, hyrdoperoxo, and superoxo ligands

A student should be able to apply their knowledge of formal oxidation states to the analysis of a proposed mechanism of a catalytic water oxidation reaction

Corequisites: 
Subdiscipline: 
Prerequisites: 
Implementation Notes: 

I used this activity during a lab lecture before an inorganic laboratory experiment in which students would be preparing and testing the Ru-based OEC mimic. 

I began the class period with a brief review of L/X type ligands and formal oxidation states. 

Students then worked in groups to complete this activity. 

 

Other implementation options:

While I used this activity as part of a lab lecture it could also be used in a lecture setting or as part of a problem set.

It could also be modified for use as an equation balancing excercise in a majors or honors general chemistry course.

Time Required: 
10-20 minutes
9 Jan 2020

Marvin suite from ChemAxon

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

As my students draw structures, I usually observe them and make suggestions to improve their drawings. 

Evaluation Results: 

While I do no formal assessment of this activity, I have observed that students seem to learn how to use the program fairly quickly and then use it without much difficulty for the rest of the semester.

Description: 

It is important for students to be able to effectively communicate the results of their scientific work. This does not only inlcude written and oral communication, but the creation of appropriate representations of the complexes they have investigated. It is crucial that students learn how to draw molecules using electronic structure drawing programs, but site licenses for structure drawing programs can be prohibitive for some institutions.

Marvin suite is a software package from ChemAxon that is freely avaialble for educational institutions. It contains a structure drawing program (MarvinSketch) and a viewer (MarvinView), as well as tools that allow for the calculation of many molecular and spectroscopic properties of molecules. This is a very useful suite of programs that can be used by all students and faculty at an instituion once an Academic License is obtained.

A set of directions for drawing a coordination complex in MarvinSketch is also included as part of this learning object. These directions will guide the user as they draw the structure of a square-planar coordination complex, trans-[Ni(NCS)2(PMe3)2].

Corequisites: 
Prerequisites: 
Learning Goals: 

After following the instructions, students should be able to draw a chemical structure electronically using a chemical structure drawing program.

Once the structure in drawn in the program, a user would then be able to access the many other functions available in the software.

Implementation Notes: 

During the first week of our semester, lab sections are usually not held for courses so that student enrollment issues can be sorted out. In an advanced course such as Inorganic Chemistry, I want to take advantage of every week that I can so I use the first lab meeting time to have students learn how to use several software programs that they wil use over the course of the semester. 

I post the download link and the license file for the software on the course LMS before the lab period and I ask the students to download and install the software. You should make sure that students update their Java installation before installing the Marvin suite. (I also place a link to the Java download site on the course LMS as well, but students tend to ignore it.) Aside from the Java issue, I have found that there are no real issues encountered by students when they install the software. 

When we meet, I ask the students to follow the linked instructions to create a drawing of a coordination complex. Once they complete that successfully, I ask them to draw several other structures. I do not  have any specific structures that I use, but I try to choose complexes with different geometries (octahedral, tetrahedral, square pyramidal, etc.) around the metal center.

The Marvin suite of programs provides the students with a number of useful tools, not just a structure drawing progam. Students use this to calculate or estimate a number of different things, such as the molecular mass, the elemental analysis, a mass spectrum, 1H and 13C NMR, and charge distribution.

To obtain a license file, the faculty member must log into the ChemAxon site and request an Academic License. Once approved, the instituion is allowed to use the software for 2 years and the license can be easily renewed when it expires.

 

Time Required: 
30 minutes
8 Jan 2020

How to Read a Journal Article: Analyzing Author Roles and Article Components

Submitted by Catherine McCusker, East Tennessee State University
Evaluation Methods: 

Follow up small group work with a class discussion of the correct answers. Grade students on participation and completness

Description: 

This literature discussion uses a recently published article on solvatochromic Mo complexes to introduce students to the different components of a research article. The activity is divied into to two parts. Before class students read the paper and focus on defining terms, investigating the "meta" data of the paper, and the different sections iof the paper. In class the students work in groups to investigate the scientific content of the paper

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Students should be able to:

  • Interpret the roles that authors play in a research project
  • Recognize the different sections of a research article and the purpose of each section
  • Understand how to access supporting information and the type of information found there
  • Find key conclusions of a research paper and the experimental evidence the author used to make those conclusions
Time Required: 
~30 min (if students complete part 1 before class)
8 Jan 2020
Evaluation Methods: 

I usually grade one student handout per pair and typically have 1 pt per answer on the worksheet, but take the total out of 60 pts (which ends up giving them a couple of free points).  

Evaluation Results: 

Last semester my 17 students had an average of 47 out of 60 on the lab--a bit lower than usual for that lab. The high was a 57 and the low was a 39. There were lots of different individual errors, but errors in identifying which of the first structures were closest packed and errors in % of holes occupied were common. 

Description: 

This first-year laboratory is designed to give students an introduction to basic solid-state structures using both CrystalMaker files and physical models. I think this would work in a foundations level inorganic course as well. It could be used alternatively as an in-class activity or take-home problem set depending on the instructor. It was adapted by me and later, David Harvey, from an original activity that was posted as an educational resource on the CrystalMaker website in the mid 2000s.  

Prerequisites: 
Corequisites: 
Learning Goals: 

Students will be able to

  • articulate how the atoms in a simple cubic, face-centered cubic, and body-centered cubic unit cell are arranged
  • determine the coordination number of particular atoms in a unit cell
  • count the atoms or ions in a unit cell and determine the empirical formula based on that
  • determine the length of a side of a unit cell based on the radius of an atom
  • visualize the holes in different kinds of unit cells and see how ionic solids can be built by putting ions in those holes
  • describe the forces holding different solids together
  • calculate the % of filled and empty space in lattices
  • identify closest packed structures
Equipment needs: 
  • Computer lab (approximately two students per computer) with CrystalMaker installed (it can be the student version if necessary)

and/or

  • Box of pennies
  • Mineral samples of calcite, fluorite, and NaCl (if you want to do the bonus)
Implementation Notes: 

I usually take one day of class to introduce students to CrystalMaker and all of the basic definitions and ideas of this lab before they start working on the stations. Typically I will work through the first station and then part of NaCl to show them some of the main ideas they will be using, asking them to provide answers (which are typically wrong on the first try!). I am typically circulating around answering questions as the students work through the lab. For a lab section of 24 working in 12 pairs, having one set of physical models seems adequate, but particularly at the beginning of the lab it might be helpful to have two sets of the face-centered cubic and body-centered cubic structures. The 12 computer "stations" are arranged in folders inside a Solid State Lab folder on the desktop of the lab computers, so students can just click on the correct folder and correct files as they work their way through the lab.

Time Required: 
3h lab period
18 Oct 2019

Mechanisms of Mn-catalyzed water oxidation reactions

Submitted by Margaret Scheuermann, Western Washington University
Evaluation Methods: 

I did not grade this activity. 

Evaluation Results: 

Three students out of 14 explicitly mentioned that this activity was helpful on the free response section of the course evaluations.

 

Description: 

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Two catalytic mechanisms, a proposed OEC mechanism and the proposed mechanism of a biomimetic OEC complexes are included. The intermediates are drawn including all charges and oxidation states, details which are sometimes omitted in the primary literature but can be helpful to students who are not accustomed to looking at multistep catalytic cycles. Students are then asked to add in the substrates and products entering and leaving the catalytic cycle. While this is, at its heart, a stoichiometry excercise, it helps calibrate students for the level of attention to detail needed to effectively engage with reading about bioinorganic catalytic mechanisms.

Learning Goals: 

After completing this activity:

A student will be able to follow along with each step in  proposed water oxidation mechanims in the literature.

A student will be able to apply their knowledge of stoichiomety to complex catalytic cycles involving electron transfer.

A student will be able to analyze and compare the details of catalytic cycles.

Corequisites: 
Subdiscipline: 
Prerequisites: 
Implementation Notes: 

I used this activity during a lab lecture before an inorganic laboratory experiment in which students would be preparing and testing an OEC mimic. The procedure we used was roughly based on a published procedure (J. Chem Ed. 2005, 82, 791) linked in web resources. 

I began the class period with a brief introduction to the chemistry of photosynthesis and where water oxidation and PSII fit in the broader picture. I then introduced the mimic that students would be preparing and the chemistry of the Oxone (R) triple salt. 

Students then worked in groups to complete this activity and discuss their structural and mechanistic observations. After the activity they were encouraged to read the papers referenced in the activity and to think about the evidence that supports the proposed mechanism.

 

Other implementation options:

While I used this activity as part of a lab lecture it could also be used to stimulate a discussion comparing structure/mechanism of biological and biomimetic systems in a lecture setting without the accompaning laboratory work.

This could also be modified for use as an equation balancing excercise in a majors or honors general chemistry course.

Time Required: 
10-20 minutes
9 Oct 2019

2019 Nobel Prize - Li-ion battery LOs

Submitted by Barbara Reisner, James Madison University

Congratulations to the 2019 recipients of the Nobel Prize - John B. Goodenough, M. Stan Whittingham and Akira Yoshino. It's a well deserved honor!

There are several LOs on VIPEr that talk about lithium ion batteries and related systems. The 2019 Nobel is a great opportunity to include something about these batteries in your class.

I hope to see more LOs in the coming weeks so we can bring this chemistry into our classrooms!

Prerequisites: 
Corequisites: 
8 Oct 2019
Evaluation Methods: 

assessment of students will be preformed by grading their answers to the questions in the activity.

Description: 

This is a 1 Figure lit discussion (1FLO) based on a Figure from a 2015 JACarticle on synthesizing conductive MOFs. This LO introduces students to Metal-Organic Frameworks and focuses on characterization techniques and spectroscopy. 

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

As a result of completing this activity, students will be able to...

  • define what metal-organic Frameworks and Post-synthetic Modifications are
  • understand MOF terminology and notation
  • discover how mass transport and electron mobility effect conductivity
  • calculate energies of electronic transitions in electron volts
  • make connections betweeen diagrams and material sturctures
  • compare optical and microscopy techniques
  • discover the concept of photocurrect and how it could be used in different applications
Implementation Notes: 

Students should be able to complete the activity without any prior knowledge of MOFs, although some introduction to MOFs and UV-vis absorption spectroscopy would be nice.

Pages

Subscribe to RSS - Second year