Second year

9 Jun 2019

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam R. Johnson, Harvey Mudd College
Evaluation Methods: 

When I do this correctly, the students don't accidentally see something which may make immature students giggle.

Evaluation Results: 

I have had multiple colleagues tell me that this technique worked for them and saved them from repeating an embarassing classroom event.

Description: 
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.
Learning Goals: 

The instructor will draw the bonding MO of dihydrogen without accidentally causing laughter in the class or self embarassment.

Corequisites: 
Equipment needs: 

chalkboard or whiteboard

ability to adjust quickly just in case

Prerequisites: 
Implementation Notes: 

I have come close to accidentally drawing the incorrect version of this diagram and I am able to stop myself quickly as illustrated in the instructions. 

Time Required: 
a minute to learn, a lifetime to master.
8 Jun 2019

Crystallographic Resources at Otterbein University

Submitted by Kevin Hoke, Berry College
Description: 

This site is another excellent resource from Dean Johnston (see also his Symmetry resource). It uses JSmol (in a web browser) to display different types of "Packing" and "Point Groups". For Packing, users can select different sizes for the atoms, display multiple unit cells, and rotate the model on the screen. Different layers can be color highlighted. 

Other portions of the website include resources for incorporating crystallography into the undergraduate curriculum.

Prerequisites: 
Corequisites: 
Implementation Notes: 

I use the Packing Models as part of a homework assignment in which they are stepped through multiple models. The Packing models displayed are very straightforward to manipulate and I would not worrying about having first-year students interact with it. I have not used the Point groups portion yet, but I intend to share that with students who are learning symmetry.

As with some other JSmol-based models, atomic radii are used instead of ionic radii so the traditional color coding (yellow for sulfur, red for oxygen, gray for metal) will suggest for some models that the anions are smaller than cations. In my assignments, I have students evaluate how well that agrees with tables of ionic radii.

It can be used in any modern web browser that supports HTML5 and/or Java. I have accessed models successfully on my iPhone, though it is much easier to use on a larger screen.

8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

8 Jun 2019

IUPAC Brief Guide to the Nomenclature of Inorganic Chemistry

Submitted by Robin Macaluso, University of Texas Arlington
Description: 

This is a short nomenclature guide designed to be used by students and faculty.

Subdiscipline: 
Topics Covered: 
Prerequisites: 
Corequisites: 
7 Jun 2019

Guideline for drawing chemical structures

Submitted by Bradley Wile, Ohio Northern University
Description: 

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I give this to all of my research students as part of the welcome to the group package.

6 Jun 2019

VSEPR: Flash Review

Submitted by Christopher Durr, Amherst College
Description: 

This presentation is meant to be a review of applying VSEPRup to steric number 6. It's designed to be viewed as a powerpoint and printed out to keep for the student's notebook.

It can be used at multiple levels: as a review immediately after learning VSEPR in general chemistry, or as a refresher before starting upper level inorganic chemistry. The instructor could add text or voice over the slides to add more detail or leave the presentation as is for students.

If you'd like .psd or .pdf files of the drawings in these presentation, please contact me directly.

Prerequisites: 
Corequisites: 
Learning Goals: 

After reviewing this material students should be able to:

Draw the correct VSEPR predicted structure of a molecule based on steric number and lone pair count.

Name VSEPR structures with their appropriate geometry.

Avoid common VSEPR mistakes, particularly those with steric number 5 and 6.

Recognize how lone pairs distort bond angles from ideal geometry in molecules like ClF3

 

Implementation Notes: 

I plan on uploading this flash review (along with others) to my class site before students arrive to my upper level inorganic course. I will voice over the slides, explaining the concepts, so they're ready to apply molecular orbital theory on the first day of class.

Time Required: 
10 - 15 Minutes
Evaluation
Evaluation Methods: 

I will compare student preparedness between this class and a previous one that did not receive a review.

Evaluation Results: 

This will be updated in the future.

Pages

Subscribe to RSS - Second year