nanoCHAts: Informal conversations about teaching

A collection of all of the IONiC VIPEr NanoCHAts. These are short discussion on a teaching topic by 4-5 faculty members from different institutions. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.

Hilary Eppley / DePauw University Wed, 04/07/2021 - 14:33
Artificial Photosynthesis Using Quantum Dot / Porphyrin Aggregates (Weiss)
Description

This literature discussion highlights recent research from the Weiss group in which electrostatically assembled aggregates of CuInS2 / ZnS quantum dots and trimethylamino-functionalized tetraphenylporphyrin molecules were used to selectively reduce carbon dioxide to carbon monoxide.

Anne Bentley / Lewis & Clark College Sun, 03/28/2021 - 14:17

Green Chemistry and Redox Flow Batteries

Submitted by Abby O'Connor / The College of New Jersey on Thu, 01/07/2021 - 10:56
Description

This paper in Chemical Science written by Ellen Matson and co-workers describes a structure function approach to improving the properties of non-aqueous redox flow batteries based upon polyoxovanadate-alkoxides (POV-alkoxides). Given the importance of battery technology on society and sustainable chemistry, this article allows students to engage with a paper that could have broad implications in society.

SLiThEr #7: Assessment Using Literature Discussions

Submitted by Kyle Grice / DePaul University on Tue, 12/29/2020 - 17:55
Description

This is the seventh SLiThEr () in the series. In this presentation/discussion, Dr. Shirley Lin explains how she used a literature discussion with students to assess their learning and knowledge. This was for a upper-division senior seminar course. In particular, she discusses questions at various levels of Bloom's Taxonomy. She also explains how to use concepts from Chemical Education Research to really dig down and assess student knowledge. 

A copper "Click" catalyst for the synthesis of 1,2,3-triazoles

Submitted by Chip Nataro / Lafayette College on Wed, 06/10/2020 - 11:40
Description

This paper (Gayen, F.R.; Ali, A.A.; Bora, D.; Roy, S.; Saha, S.; Saikia, L.; Goswamee, R.L. and Saha, B. Dalton Trans2020, 49, 6578) describes the synthesis, characterization and catalytic activity of a copper complex with a ferrocene-containing Schiff base ligand. The article is relatively short but packed with information. However, many of the details that are assumed knowledge in the article make for wonderful questions some of which I hope I have captured.

Inorganic Active Learning Lesson Plan Design

Submitted by Meghan / Indiana University on Fri, 05/15/2020 - 09:05
Description

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

Electrochemistry: Galvanic Cells and the Nernst Equation

Submitted by William Polik / Hope College on Wed, 04/08/2020 - 10:08
Description

In this online Electrochemistry Experiment, students use an Electrochemical Cell Simulator to construct electrochemical cells, measure voltages, and interpret results.

 

Formal oxidation states in Ru-catalyzed water oxidation

Submitted by Margaret Scheuermann / Western Washington University on Fri, 01/17/2020 - 16:36
Description

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Students practice assigning oxidation states to complexes with aquo, oxo, superoxo, and hydroperoxo ligands then use this information to analyze a proposed water oxidation mechanism from the literature.

Mechanisms of Mn-catalyzed water oxidation reactions

Submitted by Margaret Scheuermann / Western Washington University on Fri, 10/18/2019 - 19:53
Description

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Two catalytic mechanisms, a proposed OEC mechanism and the proposed mechanism of a biomimetic OEC complexes are included. The intermediates are drawn including all charges and oxidation states, details which are sometimes omitted in the primary literature but can be helpful to students who are not accustomed to looking at multistep catalytic cycles.