Electronic spectroscopy

8 Oct 2019
Evaluation Methods: 

assessment of students will be preformed by grading their answers to the questions in the activity.

Description: 

This is a 1 Figure lit discussion (1FLO) based on a Figure from a 2015 JACarticle on synthesizing conductive MOFs. This LO introduces students to Metal-Organic Frameworks and focuses on characterization techniques and spectroscopy. 

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

As a result of completing this activity, students will be able to...

  • define what metal-organic Frameworks and Post-synthetic Modifications are
  • understand MOF terminology and notation
  • discover how mass transport and electron mobility effect conductivity
  • calculate energies of electronic transitions in electron volts
  • make connections betweeen diagrams and material sturctures
  • compare optical and microscopy techniques
  • discover the concept of photocurrect and how it could be used in different applications
Implementation Notes: 

Students should be able to complete the activity without any prior knowledge of MOFs, although some introduction to MOFs and UV-vis absorption spectroscopy would be nice.

25 Jul 2019

1FLO: One Figure Learning Objects

Submitted by Chip Nataro, Lafayette College
Corequisites: 
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

6 Jun 2019
Evaluation Methods: 

The guided reading questions may be graded using the answer key. 

Evaluation Results: 

These questions have not yet been assigned to students.

Description: 

Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."

Course Level: 
Learning Goals: 

1.  Bring together ligand field theory and symmetry.

  1. Students should be able to identify symmetry of novel molecules in the literature.

  2. Students should be able to explain d-orbital ordering in a coordination complex using ligand field theory.

  3. Students should be able to identify donor/acceptor properties of previously unseen ligands.

  4. Students should be able to apply your knowledge of electronic transitions to the primary literature.

  5. Students should be able to become more familiar with 4-coordinate geometries.

  6. Students should be able to predict magnetic moments of high-spin and low-spin square-planar complexes.

  7. Students should be able to identify properties of ligands that favor formation of the highly unusual high-spin square planar complexes.

2.  Students should comfortable with reading and understanding primary literature.


 

Related activities: 
Implementation Notes: 

You do not have to assign all of the guided reading questions at once.  You may consider assigning questions as they pertain to where you are in your inorganic chemistry class.

Time Required: 
this has not been used yet for in-class discussion.

Pages

Subscribe to RSS - Electronic spectroscopy