Stable Borepinium and Borafluorenium Heterocycles: A Reversible Thermochromic “Switch” Based on Boron–Oxygen Interactions by Robert J. Gilliard Jr.
Description

This literature discussion on the Hot Paper communication in Chemistry, A European Journal; highlights the first examples of borepinium and borfluorenium cations whose optical properties can be tuned and also the very first reported example of thermochromism in these cationic species. R. J. Gilliard, Chem. Eur. J. 2019, 25, 12512. https://doi.org/10.1002/chem.201903348

Niharika K Botcha / Carnegie Mellon University Fri, 06/30/2023 - 10:27
2023 Content Building Workshop - Morgan State University

This is a list of all of the learning objects developed in association with the 2023 content building workshop. Prof. Robert Gilliard was the featured speaker for this workshop, so most of the LOs will focus on his work.

Chip Nataro / Lafayette College Tue, 06/27/2023 - 10:56

Inorganic Chemistry Laboratory

Submitted by Cody Webb Jr / Hartwick College on Wed, 06/14/2023 - 02:02
Description

Students perform weekly laboratory experiments to explore and apply concepts covered in the lecture
component of the course.

Inorganic Chemistry

Submitted by Jaime Murphy / Harding University on Mon, 06/12/2023 - 11:04
Description

CHEM 4310 is an in-depth review of modern inorganic chemistry. Topics will include symmetry, acids and bases, reduction-oxidation reactions, periodic trends, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and material chemistry. The course will meet for three hours of lecture and three hours of laboratory per week.

Advanced Inorganic Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:18
Description

This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.

Advanced Inorganic Chemistry

Submitted by Lauren VanGelder / Norfolk State University on Wed, 06/07/2023 - 15:17
Description

This course is an introduction to modern inorganic chemistry. Topics include principles of structure, bonding, and chemical reactivity with application to compounds of the main group and transition elements, including organometallic chemistry.

Organometallic Precursor in [FeFe] Hydrogenase H-Cluster Bioassembly (Britt)

Submitted by Amanda Reig / Ursinus College on Wed, 03/22/2023 - 15:11
Description

In Fall 2022, R. David Britt was awarded the ACS Alfred Bader Award in Bioinorganic Chemistry for pioneering pulse electron paramagnetic resonance (EPR) spectroscopy of the photosystem II oxygen-evolving complex, plus the advanced EPR spectroscopic characterization of numerous and varied key metalloenzymes and catalysts. 

SLiThEr #42: Our Favorite Labs

Submitted by Chip Nataro / Lafayette College on Thu, 11/17/2022 - 08:29
Description

Chip Nataro (Lafayette College) hosts a live discussion covering the favorite labs that people teach. The discussion somewhat evolved into a conversation on "so, you are teaching inorganic lab for the first time...what do you do?"