Atomic Structure and Symbolism
Part 1 of the Flipped Learning in General Chemistry Series. This video describes the three basic parts of an atom and introduces the shorthand notation that chemists use to describe these parts.
Part 1 of the Flipped Learning in General Chemistry Series. This video describes the three basic parts of an atom and introduces the shorthand notation that chemists use to describe these parts.
Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.
This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011, 133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.
This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.
This course is composed of two components:
A. Lecture:
This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride.
This course is an introduction to the field of inorganic chemistry. The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity. These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.
A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.
The class is divided into two parts. In the first part students learn the physical principles involved with the absorption of light and the photophysical and photochemical processes that may occur aafter the abosrption of light. The second part uses literature discussions and student presentations to explore applications of photophysical and photochemical reactions in inorganic chemistry