Inorganic Chemistry
Introduces students to a broad overview of modern inorganic chemistry. Included are considerations of molecular symmetry and group theory, bonding and molecular orbital theory, structures and reactivities of coordination compounds, organometallic chemistry, catalysis and transition metal clusters. Laboratory experiences will include the measurement of several important features of coordination compounds, such as their electronic spectra and paramagnetism, as well as the synthesis and characterization of organometallic compounds.
Encapsulation of Small Molecule Guests by a Self-Assembling Superstructure
This literature discussion focuses upon two journal articles by the Rebek group on the synthesis and host-guest chemistry observed with the "tennis ball."
Redox-switch polymerization catalysis
This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011, 133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.
1FLO: Redox-switch polymerization catalysis
This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.
Inorganic Chemistry
Catalog Description: Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.
Advanced ChemDraw (2019 Community Challenge #2)
This in-class activity was designed for a Chemical Communications course with second-year students. It is the second part of a two-week segment in which students learn how to use ChemDraw (or similar drawing software to create digital drawings of molecules).
Inorganic Chemistry
This course is composed of two components:
A. Lecture:
Inorganic Chemistry
This course is an introduction to the field of inorganic chemistry. The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity. These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.
Guided Literature Discussion of “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid”
This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer. It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409.
Pagination
- Previous page
- Page 15
- Next page