Electrocatalysis and Proton Reduction

Submitted by Matt Whited / Carleton College on Thu, 07/19/2012 - 16:46
Description

These slides provide a brief introduction to the concept of electrocatalysis using the glyoximato cobalt catalysts for hydrogen production recently examined by Peters, Gray, and others.  They provide a suitable introduction to the topic for students interested in reading the primary literature on these topics.

Exploring the Nanoworld Innovating through Materials from the University of Wisconsin Madison

Submitted by Patricia Stan / Taylor University on Thu, 07/19/2012 - 13:29
Description

This is a great web resource for all types of nano materials.  There are lesson plans, demos, activites, labs and lots of background information.  It is very easy to navigate and there are videos of the labs so you can see each step - very useful when doing a type of synthesis or technique new to you.

An Introduction to Electrocatalysis: Hydrogen Evolution from Mono and Binuclear Cobalt Complexes

Submitted by Abby O'Connor / The College of New Jersey on Thu, 07/19/2012 - 10:45
Description

This learning object was developed at the 2012 NSF sponsored cCWCS VIPEr workshop at UNC-CH where we were fortunate to hear Jillian Dempsey present this research that has appeal to students. This work focuses on an exciting and promising strategy to develop new technology to support a solar energy economy. This literature discussion leads students through a current application in the field of electrocatalysis.

Literature Discussion on “Mechanisms for the Activation of Carbon Monoxide via Oxorhenium Complexes.”

Submitted by Nicole Crowder / University of Mary Washington on Thu, 07/19/2012 - 09:54
Description

This is intended as a guided reading assignment for the JACS Communication, Mechanism for the Activation of Carbon Monoxide via Oxorhenium Complexes” by Smeltz, Boyle, and Ison; J. Am. Chem. Soc. 2011, 133, 13288-13291. This article will expose students to newly published research and novel reaction mechanisms. It will require students to apply their knowledge of electron counting and organometallic mechanisms.

C(sp3)-F Activation through an Initial C(sp3)-H Activation Mechanism

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 07/18/2012 - 16:35
Description

This paper is from a Science article from Alan Goldman’s group at Rutgers University. It was one of the literature articles that was assigned during the IONiC VIPEr Workshop in July 2012.  In conjunction with reading the article, workshop participants attended a seminar presented by Alan Goldman on this work.

Colored Note Cards as a Quick and Cheap Substitute for Clickers

Submitted by Chris Bradley / Mount St. Mary's University on Tue, 07/17/2012 - 10:23
Description

For many years I have resisted using clickers, mainly because at our university there is no standard universal clicker. I wanted to keep student costs as low as possible but also desired the type of live feedback during a lecture that clicker questions can provide. In both my general chem. (200-300 students) and upper division courses (50-75 students), I now pass out 4 or 5 colored notecards on the first day of class and make sure everyone has one of each color.

Simple synthesis of MoO2(acac)2 and evaluation of spectra

Submitted by Patricia Stan / Taylor University on Mon, 07/16/2012 - 15:23
Description

A very simple lab synthesis that allows the student to carry out a coordination reaction and then look at the NMR and IR spectra.  I use this as a first lab to introduce them to using the NMR and IR.  If students work through the spectroscopy tutorial they should be able to explain the IR and NMR spectra.

Polypropylene Stereochemistry and Identification by 13C NMR Spectroscopy

Submitted by Shirley Lin / United States Naval Academy on Mon, 07/16/2012 - 11:55
Description

These 6 slides introduce the nomenclature used to describe the stereochemistry of various polypropylenes (PPs) that can be synthesized by metallocene-catalyzed polymerizations. Although PP is the specific polymer discussed, the nomenclature applies to other alpha-olefin polymerizations.

Modeling the FeB center in Bacterial Nitric Oxide Reductase: A Reading Guide

Submitted by Sheila Smith / University of Michigan- Dearborn on Fri, 02/24/2012 - 11:52
Description

In 2011, I was fortunate to have Nicolai Lehnert come and speak to my bioinorganic class on his work modeling the FeB (non heme iron) center in bacterial Nitric Oxide reductase.  He suggested this paper to prepare the students for his talk and I developed this reading guide to help them (the students) get more out of the reading.