Reaction mechanisms

28 Mar 2008

Miessler and Tarr: Inorganic Chemistry, 3rd. Ed

Submitted by Nancy Scott Burke Williams, Scripps College, Pitzer College, Claremont McKenna College
Description: 

Miessler and Tarr is an inorganic textbook which is is best suited to an upper-division one-semester inorganic course, though there is more material than can be covered in a single semester, so some choice of topics is necessary.  It is very well suited for a course oriented around structure, bonding, and reaction chemistry of transition metal compounds, but is very limited in its treatment of solids, main-group, descriptive chemistry, and bioinorganic.  Pchem would be helpful but is not necessary.  In particular, the treatment of MO theory is very in-depth.  The quality of end-of chapter problems is generally good.  The book is fairly readable, giving it an advantage over some of the more "reference work" style textbooks, but as a result, is a less useful text to have on your bookshelf five years hence.  Pearson Higher Ed. suggests a retail price of $144.20.  

Prerequisites: 
Corequisites: 
Course Level: 
26 Mar 2008

Housecroft and Sharpe: Inorganic Chemistry, 3ed

Submitted by Lori Watson, Earlham College
Description: 

Housecroft and Sharpe (Inorganic Chemistry, 3ed): This is a comprehensive inorganic textbook designed primarily for students at the Junior/Senior level. P-Chem would not be needed as a prerequisite for this text, but would be helpful. It includes both theoretical and descriptive material along with special topics, enough for a two semester course though it is easily adaptable to a one-semester "advanced inorganic" course by choosing only some topics. It is written in a clear and generally readable style and the full-color graphic contribute to student understanding. Ancillaries include electronic versions of most figures, and a student site with a limited number of multiple choice review questions for each chapter. The 3rd edition updates the end-of -the-chapter problems, though disappointingly does not draw problems from the recent literature. In general, these are good review problems to make sure students understand the basic concepts, but some faculty will want to supplement student assignments with more challenging problems. The list price for the student text is $175 for a paperback, 1098p version.

Prerequisites: 
Corequisites: 
Course Level: 
9 Mar 2008
Evaluation Methods: 

Take home writing assignment and in-class discussion.

Evaluation Results: 

Students found the kinetics a bit difficult to follow, but "got it" after we went over it in class. They picked up on the catalytic cycle right away and came away with some good "suggestions" for future work.

Description: 

This is a literature discussion assignment in which students read a paper, come up with their own answers to the provided questions (and submit them).  This is followed by a general in-class discussion on the paper.  This particular article deals with hydrosilyation of carbonyl compounds by a Re catalyst and describes the mechanism and kinetics in detail.  I found it a good paper to help students connect their P-chem (and inorganic) kinetics with a "real" system.  As part of the literature assignment, I also ask students to draw an MO diagram of a simple substrate (for review).

Subdiscipline: 
Course Level: 
Learning Goals: 

Upon completing this LO students should be able to:

  1. read and extract information from a primary literature article
  2. develop the MO diagram for SiHCl3 using a fragment orbital approach
  3. interpret X-ray crystallographic data to explain bond distances and angles
  4. analyze kinetics data to understand reaction order and kinetic isotope effect for stoichiometric and catalytic reactions
  5. understand and explain how a reaction can be irreversible yet have labile ligands
     
Implementation Notes: 

Students who are currently enrolled in Thermodynamics and Kinetics may need to be paired with a student who has previously completed the course

Time Required: 
2-3 hours writing for students; 50 minutes in-class (could be shorter)

Pages

Subscribe to RSS - Reaction mechanisms