Guided Literature Discussion of “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid”

Submitted by M. Watzky / University of Northern Colorado on Mon, 01/28/2019 - 14:50
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer.  It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409.

Inorganic Chemistry

Submitted by Kari Young / Centre College on Mon, 01/28/2019 - 11:23
Description

A study of the chemistry of inorganic compounds, including the principles of covalent and ionic bonding, symmetry, periodic properties, metallic bonding, acid-base theories, coordination chemistry, inorganic reaction mechanisms, and selected topics in descriptive inorganic chemistry. Laboratory work is required.

Guided Literature Discussion of “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines”

Submitted by M. Watzky / University of Northern Colorado on Wed, 01/16/2019 - 19:11
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend / Calvin College on Sat, 06/23/2018 - 10:56
Description

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Foundation Level

Submitted by James F. Dunne / Central College on Fri, 06/22/2018 - 22:31
Description

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

Inorganic Chemistry

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/22/2018 - 10:45
Description

Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.

Inorganic and Materials Chemistry

Submitted by Karen S. Brewer / Hamilton College on Mon, 01/15/2018 - 17:12
Description

Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.