Analyzing the Proposed Reaction Profile in “Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-Coupling”
This LO is a literature discussion based on one figure in Chan et. al.
A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
From the course catalog: The chemistry of the Main Group elements and the transition metals are studied with emphasis on the properties, structures, and reactivities of these elements and their compounds.
The goal of this course is to provide an in-depth introduction to the broad subject of organometallic chemistry. Selected topics include: main group organometallics, oxidation states, ligands, structure and bonding, mechanism and mechanistic analysis, cross coupling, hydrogenation, hydroformylation, olefin polymerization, olefin metathesis, and other applications in homogeneous catalysis and organic synthesis.
This LO is a literature discussion based on one figure in Chan et. al.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.
This LO discuss various aspects of a reversible hydrogen activation by a metal-free phosphonium-borate compound. Attentions are paid to the specific and usual reaction between highly steric phosphine and borane reactants to form a zwitterionic phosphonium borate product. NMR spectroscopy, kinetics and thermodynamics of the hydrogen activation with the phosphonium borate product are also discussed. The original work was published in Science by Douglas W. Stephan and co-workers.
This collection accompanies the IONiC VIPEr nanoCHAt video series NeWBiEs, recorded in Spring 2022. This series is comprised of weekly conversations with two IONiC members, Wes Farrell and Shirley Lin from the US Naval Academy, as they taught a foundation-level inorganic chemistry course for the first time. The LOs discussed in the videos are included in this collection.
The course is currently designed for a student population impacted by COVID and College policies that the department offer this course every third semester. This semester I have a diverse student population in terms of developmental levels including cohort year (freshman, junior, senior), prior foundational course work (biochemistry, analytical, physical), and research experience. I have altered the assessment part of the course substantively from prior iterations and reduced topic coverage to provide flexibility.