Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).

Chapter 21--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:53
Description

Chapter 21 from George Stanley's organometallics course, Polymerization

 

this chapter covers the history of polymerization reactions.

Unlike the vast majority of the chapters in this series, there are no powerpoint slides for this chapter.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 20--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:48
Description

Chapter 20 from George Stanley's organometallics course, Metathesis

 

this chapter covers the history of metathesis reactions.

Unlike the vast majority of the chapters in this series, there are no powerpoint slides for this chapter.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 19--Stanley Organometaliics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:34
Description

Chapter 19 from George Stanley's organometallics course, Polymerization and Metathesis

 

this chapter covers polymerization catalysis and olefin metathesis.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 18--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:29
Description

Chapter 18 from George Stanley's organometallics course, Cross-coupling

 

this chapter covers a variety of different named cross-coupling reactions.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 17--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:23
Description

Chapter 17 from George Stanley's organometallics course, Acetic Acid

 

this chapter covers the various catalytic methods for the production of acetic acid.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Chapter 16--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:15
Description

Chapter 16 from George Stanley's organometallics course, Hydroformylation

 

this chapter covers hydroformylation catalysis and includes a historical perspective.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.