Foundations of Inorganic Chemistry

Submitted by Sabrina Sobel / Hofstra University on Mon, 01/22/2018 - 14:58
Description

Fundamental principles of inorganic chemistry, including: states of matter; modern atomic and bonding theory; mass and energy relationships in chemical reactions; equilibria; acids and bases; descriptive inorganic chemistry; solid state structure; and electrochemistry. Periodic properties of the elements and their compounds are discussed (3 hours lecture, 1 hour recitation). 

Inorganic Chemistry

Submitted by Nicole Crowder / University of Mary Washington on Mon, 01/22/2018 - 10:45
Description

Modern theories of atomic structure and chemical bonding and their applocations to molecular and metallic structures and coordination chemistry.

Isomerism in Coordination Complexes

Submitted by Anthony L. Fernandez / Merrimack College on Thu, 01/18/2018 - 12:07
Description

Students are confronted with a number of new types of isomerism as they move from organic chemistry into inorganic chemistry. This can be confusing and students often have trouble visualizing structures and differentiating between isomers. In this exercise, students are asked to examine a number of different crystal structures from the Teaching Subset (distributed with Mercury version 3.10, early 2018) of the Cambridge Structural Database.

Metal Tropocoronand Complexes

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/17/2018 - 13:36
Description

This exercise looks at the metal complexes of tropocoronand ligands, which were first studied by Nakanishi, Lippard, and coworkers in the 1980s. The size of the metal binding cavity in these macrocyclic ligands can be varied by changing the number of atoms in the linker chains between the aminotroponeimine rings, similar to crown ethers. These tetradentate ligands bind a number of +2 metal centers (Cd, Co, Cu, Ni, and Zn) and the geometry of the donor atoms around the metal center changes with the number of atoms in the linker chains.

Inorganic and Materials Chemistry

Submitted by Karen S. Brewer / Hamilton College on Mon, 01/15/2018 - 17:12
Description

Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.

Inorganic Chemistry I with Laboratory

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 12:17
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).