VIPEr Fellows 2022 Workshop Favorites
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
We have developed a tabletop game to help students get comfortable with symmetry adapted linear combinations of orbitals (SALCs), a conceptual model used to understand bonding in molecular orbital theory. We have found that students often get anxious about SALCs and miss not only the visual connections to symmetry, but also the fun! This LO includes information about the game, files you can use to print your own copy as well as a link in case you want to purchase a copy, and an example of how it might be incorporated into the classroom.
Metals in biological systems can perform a wide range of reactions with exquisite efficiency and selectivity. In contrast, performing many of the same reactions in the lab requires harsh conditions and/or rare, expensive materials.
The course will cover the elements of the periodic table that are omitted in general and organic chemistry, mainly the transition (d-block) metals.
This LO was developed in 2022 as part of a collection celebrating the “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” Inorganic Chemistry special issue. Check out the editorial and issue here: Editorial Special Issue
The questions below refer to the following 2020 publication by Dr. Jonathan Kuo and Dr. Karen Goldberg
This LO focuses on creating complexes with multiple bonds between late transition metals and nitrogen. The questions will guide students through Mindiola and Hillhouse's communication that details the synthesis and investigation of three-coordinate terminal amido and imido complexes of nickel. This communication is significant because it describes the synthesis and structural characterization of what became known as his "double nickel" complex, which contains a Ni-N double bond.
This LO brings together organometallic chemistry, electrochemistry, and computational chemistry in a complete whole, and shows how these different expertises and techniques all can add to our understanding of a rich chemical system. It might be of particular interest in a class dominated by even-electron and diamagnetic chemistry to give students an understanding of how practitioners approach odd-electron, paramagnetic systems.
This is a general assignment given prior to discussing a paper in class. Students are asked to read a particular literature paper, and then fill out the template giving the citation information of the paper and: three (3) new things they learned from the paper, two (2) questions that reading the paper raised for them or left unanswered, and one (1) reference cited by the paper that the student thinks is worth reading and why. The assignment helps seed the discussion prior to class, and gives the instructor some information about specific details to discuss to fill in gaps in the students'
This Learning Object is dedicated to Prof. Claudia Turro as part of the VIPEr LGBTQIAN+ LO collection created in celebration of Pride Month (Jun) 2022. Prof. Turro was featured in the April 2022 special virtual issue Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists (https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00729). Claudia holds a special place in my heart. I came out later in life, and she was incredibly supportive as I wrestled with my identity as a gay man.